
Introduction to SQL Data
Manipulation Language (DML)

CSCI 220: Database Management and Systems Design

1

Today you will learn…

• How the relational calculus and relational algebra are used in real-world
databases

• How to retrieve data using SQL

2

Previously: Database Changes

• You learned how to a relational schema using the SQL DDL (Structured
Query Language Data Definition Language)

• Create the Loan table: 
CREATE TABLE loan (id INTEGER, amount MONEY)
PRIMARY KEY (id);

• Insert into the Loan table: 
INSERT INTO loan (id, amount) VALUES (1, 100.00);

3

Today: Database Queries
• How to retrieve records from a database?

• Using the SQL DML (Structured Query Language Data Manipulation Language)

• Find the record for the loan with ID 111: 
SELECT *
FROM loan
WHERE loan.id = 111;

• Supports sorting, queries across tables, computing averages, etc.

• Your SQL query tells the database what you want. The database (usually)
retrieves the results as efficiently as possible.

4

Schema Review

5

Customer
id name

1 Jane Smith

Loan
id amount

111 100.00

Borrows
customer_id loan_id

1 111

Queries with Relational Algebra

• What loans does Jane Smith have?

• For brevity, C = customer, B = borrows, L = loan

•

•

πloan_id, amount (σname=Jane Smith(C) ⋈C.id = B.customer_id B ⋈B.loan_id = L.id L)

πloan_id, amount (σname=Jane Smith (C ⋈C.id = B.customer_id B ⋈B.loan_id = L.id L))

6

Query with Relational Calculus

• {l.id, l.amount | LOAN(l) AND
((∃b)(∃c)(BORROWS(b) AND CUSTOMER(c) AND
l.id = b.loan_id AND b.customer_id = c.id AND
c.name= 'Jane Smith'))}

7

Query with SQL

• SELECT loan_id, amount
FROM customer
JOIN borrows ON customer.id = borrows.customer_id
JOIN loan ON borrows.loan_id = loan.id
WHERE customer.name = "Jane Smith";

8

Why Three Query Languages?

• Relational calculus: declarative specification of a query

• SQL: user-friendly declarative specification of a query

• Relational algebra: imperative specification of a query

• To evaluate SQL, the DBMS chooses between multiple candidate
relational algebra queries

9

Overview of DDL Operations
Operation Statement

Create table CREATE TABLE <name> (<field> <domain>, …)

Drop table DROP TABLE <name>

Insert row into table INSERT INTO <name> (<field names>)

VALUES (<field values>)

Delete row from table DELETE FROM <name>

WHERE <condition>

Update rows in table
UPDATE <name>

SET <field name> = <value>

WHERE <condition>

10

Overview of DML Operations
• Simple: 
SELECT * FROM branch;

• Complex: 
SELECT customer.id, SUM(amount) as debt
FROM customer
JOIN borrows ON customer.id = borrows.customer_id JOIN
loan ON borrows.loan_id = loan.id
GROUP BY customer.id
HAVING debt > 100
ORDER BY debt;

11

SELECT Documentation

12 https://www.sqlite.org/lang_select.html

https://www.sqlite.org/lang_select.html

SELECT FROM WHERE

• SELECT amount
FROM loan
WHERE amount > 1000

• How does this differ from: 

• Eliminating duplicates is costly, and
sometimes duplicates are useful

πamount (σamount>1000 (loan))

13

loan
id amount

111 100.00

112 9001.00

113 2000.00

114 2000.00

DISTINCT

• If you want to eliminate duplicates:

• SELECT DISTINCT amount
FROM loan
WHERE amount > 1000

• Relational algebra (RA) as we
defined it works with sets. We
could redefine it as a “bag algebra”
to allow duplicates (RA*).

14

loan
id amount

111 100.00

112 9001.00

113 2000.00

114 2000.00

SELECT FROM Multiple Tables
• SELECT name, loan_id
FROM customer, borrows
WHERE customer.id = borrows.customer_id

• SELECT name, loan_id
FROM customer AS c, borrows AS b
WHERE c.id = b.customer_id

• Similar to: 
 πname, loan_id (σcustomer.id = borrows.customer_id (customer × borrows))

πname, loan_id (customer ⋈customer.id = borrows.customer_id borrows)
15

Conceptual Algorithm
• SELECT attribute1, attribute2, …
FROM relation1, relation2, …
[WHERE predicate]

• FROM could be implemented as a cartesian product,

• WHERE could be implemented as selection,

• SELECT could be implemented as projection,

•

×

σ

π

πa1,a2,… (σP (r1 × r2 × …))
16

Advanced SELECT
• Use * to get all attributes

• Use DISTINCT to eliminate duplicates

• Use AS to rename columns

• Arithmetic operations are supported

• SELECT amount * 100 AS cents
FROM loan
WHERE amount > 1000

17

https://www.sqlite.org/lang_select.html

https://www.sqlite.org/lang_select.html

Advanced SELECT

• Use ORDER BY to sort results:

• SELECT amount
FROM loan
ORDER BY amount

• Aggregate operators are also available: AVG, MIN, MAX, SUM, COUNT, …

• SELECT SUM(amount)
FROM loan

18

https://www.sqlite.org/lang_aggfunc.html

https://www.sqlite.org/lang_aggfunc.html

Advanced WHERE
• Predicates are composed of operators, attribute names, and constants

• Basic operators: <, >, <=, >=, =, !=, AND, OR, NOT, …

• SQL-specific operators: IN, LIKE, ISNULL, BETWEEN, …

• SELECT id
FROM loan
WHERE amount BETWEEN 9000 AND 10000 OR amount < 10

• SELECT name
FROM customer
WHERE name LIKE '% Smith'

19
https://www.sqlite.org/lang_expr.html

https://www.sqlite.org/lang_expr.html

Advanced FROM

• Specifies which relation(s) to retrieve tuples from

• Can alias relations for convenience (and self-joins)

• Can directly specify joins

• SELECT name, loan_id
FROM customer AS c JOIN borrows AS b
ON c.id = b.customer_id

20

Preview: Query Evaluation Plans
• SELECT name, loan_id
FROM customer, borrows
WHERE customer.id = borrows.customer_id

• In three steps, draw on the board: 
πname, loan_id (σcustomer.id = borrows.customer_id (customer × borrows))

21

customer
id name

1 Jane Smith

2 John Smith

4 Hazel Jones

borrows
customer_id loan_id

1 111

2 111

3 222

Preview: Query Evaluation Plans
• SELECT name, loan_id
FROM customer, borrows
WHERE customer.id = borrows.customer_id

• In two steps, draw on the board: 
πname, loan_id (customer ⋈customer.id = borrows.customer_id borrows)

22

customer
id name

1 Jane Smith

2 John Smith

4 Hazel Jones

borrows
customer_id loan_id

1 111

2 111

3 222

Advanced SQL DML
CSCI 220: Database Management and Systems Design

23

• Use the SQL DML to form these queries:

• Retrieve the names of all employees

• Retrieve the name of the employee
with SSN = 123456789

• Retrieve the names and SSNs of the
employees making more than $71,000

• Retrieve the name of each manager
and the name of the department they
manage

Practice Quiz

24

employee
name ssn salary

John Smith 123 70000
Jane Smith 234 71000
Frank Wong 345 72000

department
name id mgr_ssn

Research 1 345
Administration 2 234

dept_locations
dept_id Location

1 Houston
1 Boston
2 Boston

Today you will learn…

• How to use advanced SQL DML features

25

Schema Review

26

Customer
id name

1 Jane Smith

Loan
id amount

111 100.00

Borrows
customer_id loan_id

1 111

Savings Account
id amount

111 100.00

Deposits
customer_id account_id

1 111

Aggregates and GROUP BY

• How to calculate the total debt of all customers?

27

SELECT customer.name, SUM(amount) as debt
FROM customer
JOIN borrows ON customer.id = borrows.customer_id
JOIN loan ON borrows.loan_id = loan.id
GROUP BY customer.id

HAVING

• How to calculate the total debt of all customers?

• For only those with more than $100 of debt?

28

SELECT customer.name, SUM(amount) as debt
FROM customer
JOIN borrows ON customer.id = borrows.customer_id
JOIN loan ON borrows.loan_id = loan.id
GROUP BY customer.id
HAVING debt > 100

Views

29

• How to calculate the total debt of all customers?

• Save the query as a view:

CREATE VIEW debt_view AS
SELECT customer.id, customer.name, SUM(amount) as debt
FROM customer
JOIN borrows ON customer.id = borrows.customer_id
JOIN loan ON borrows.loan_id = loan.id
GROUP BY customer.id;

SELECT * FROM debt_view;

INTO

• Copy data into a new table: 
SELECT *
INTO customer_2024-1-1_bak
FROM customer

• Not supported by SQLite, but equivalent to: 
CREATE TABLE customer_2024-1-1_bak AS
SELECT *
FROM customer

30

SERIAL

• How to assign unique identifiers to records?

• For example: customer.id, loan.id, etc.

• In PostgreSQL: 
CREATE TABLE customer (id SERIAL PRIMARY KEY, name TEXT);

INSERT INTO customer (id, name) VALUES (DEFAULT, 'Jane Smith');
INSERT INTO customer (name) VALUES ('John Smith');

• SQLite uses AUTOINCREMENT and ROWID to similar effect

31

https://www.postgresql.org/docs/current/datatype-numeric.html#DATATYPE-SERIAL
https://www.sqlite.org/autoinc.html
https://www.sqlite.org/lang_createtable.html#rowid

Review: NULL

• Databases offer a special value, NULL

• NULL can be used to represent unknown or inapplicable values

• For example, a newly hired employee’s HIRE_DATE may be NULL until it is
decided

• Only allow NULL if you need to

• By default, all columns can contain NULL (except primary key columns)

32

Locating NULL Values

33

employee
id name hired

1 Peter 2023-1-1

2 Sara 2023-5-1

3 Drake NULL

Doesn’t work:
SELECT * FROM employee
WHERE hired = NULL

Instead:
SELECT * FROM employee
WHERE hired IS NULL

NULL Operations

34

Expression Result

1 + NULL NULL
1 - NULL NULL

1 * NULL NULL

1 / NULL NULL

1 = NULL NULL

1 < NULL NULL

1 > NULL NULL

TRUE OR NULL TRUE

TRUE AND NULL NULL

FALSE OR NULL NULL

FALSE AND NULL FALSE

NULL AND NULL NULL

NULL OR NULL NULL

Some DBMSs use a third
boolean state, UNKNOWN,

instead of NULL. IMHO,
NULL is clearer.

https://learn.microsoft.com/en-us/sql/t-sql/language-elements/null-and-unknown-transact-sql?view=sql-server-ver16

Sets vs Multisets

• Relational algebra (RA) operates on sets

• SQL DML operates on multisets (AKA, bags)

• Duplicates are preserved (by default)

• Relational algebra can be extended to work on multisets (RA*)

35

RA* Examples

• Additive addition:

• Bag difference: 
 

• Also think about: 

R ∪* S

R −* S
S −* R

σ*, π*, ×*

36

R
A B
1 y
1 y
2 z

S
A B
1 y
2 z
3 y

SQL Set and Bag Operations

37

Set Operation Bag Operation

UNION UNION ALL

INTERSECT INTERSECT ALL

EXCEPT or MINUS EXCEPT ALL or MINUS ALL

(SELECT customer_id FROM borrows)
UNION/INTERSECT/MINUS

(SELECT customer_id FROM deposits)

Nested Queries
• An (outer) query can contain (inner) queries in the FROM or WHERE clause

• Find loans, except those with id 222: 
SELECT id
FROM loan
EXCEPT (SELECT id FROM loan WHERE loan.id = 222)

• Find the ID of the customer with the most debt: 
SELECT customer_id, MAX(debt)
FROM
(SELECT customer_id, SUM(amount) as debt
FROM borrows JOIN loan ON borrows.loan_id = loan.id
GROUP BY customer_id)

38

How can this be written
without a subquery?

Nested Queries
• An (outer) query can contain (inner) queries in the FROM or WHERE

clause

• Find the largest loans: 
SELECT id, amount
FROM loan
WHERE loan.amount = (SELECT MAX(amount) FROM loan)

• (Mostly) equivalent to: 
SELECT id, amount
FROM loan
WHERE loan.amount >= ALL (SELECT amount FROM loan)

39

Nested Queries

• Common operators: 
UNION, INTERSECT, EXCEPT, IN, ALL, ANY, EXISTS, UNIQUE

• Bag operators (keep duplicates): 
UNION ALL, INTERSECT ALL, EXCEPT ALL

40

JOINs

• We use joins to associate records across relations

• Inner joins: records without associated records are omitted

• Outer joins: records without associated records are retained

• LEFT ⟕, RIGHT ⟖, and FULL ⟗

41

Inner Join

42

SELECT *
FROM customer
JOIN borrows ON customer.id = borrows.customer_id

Customer
id name
1 Sam Wilson
2 Steve Rogers
3 Peggy Carter

Borrows
customer_id loan_id

1 111
2 222

id name customer_id loan_id
1 Sam Wilson 1 111
2 Steve Rogers 2 222

Left Outer Join

43

Customer
id name
1 Sam Wilson
2 Steve Rogers
3 Peggy Carter

Borrows
customer_id loan_id

1 111
2 222

id name customer_id loan_id
1 Sam Wilson 1 111
2 Steve Rogers 2 222
3 Peggy Carter NULL NULL

SELECT *
FROM customer
LEFT OUTER JOIN borrows ON customer.id = borrows.customer_id

Left Outer Join

44

Customer
id name
1 Sam Wilson
2 Steve Rogers
3 Peggy Carter

Borrows
customer_id loan_id

1 111
2 222

id name customer_id loan_id
1 Sam Wilson 1 111
2 Steve Rogers 2 222

SELECT *
FROM borrows
LEFT OUTER JOIN customer ON customer.id = borrows.customer_id

Full Outer Join

45

Customer
id name
1 Sam Wilson
3 Peggy Carter

Borrows
customer_id loan_id

1 111
2 222

SELECT *
FROM customer
FULL OUTER JOIN borrows ON customer.id = borrows.customer_id

(Deleted Steve Rogers)

id name customer_id loan_id
1 Sam Wilson 1 111
3 Peggy Carter NULL NULL

NULL NULL 2 222

Cross Product

46

Customer
id name
1 Sam Wilson
2 Steve Rogers
3 Peggy Carter

Borrows
customer_id loan_id

1 111
2 222

SELECT *
FROM customer, borrows

id name customer_id loan_id
1 Sam Wilson 1 111
1 Sam Wilson 2 222
2 Steve Rogers 1 111
2 Steve Rogers 2 222
3 Peggy Carter 1 111
3 Peggy Carter 2 222

Review: Kitchen Sink Query

47

SELECT customer.id, SUM(amount) as debt
FROM customer
JOIN borrows ON customer.id = borrows.customer_id
JOIN loan ON borrows.loan_id = loan.id
GROUP BY customer.id
HAVING debt > 100
ORDER BY debt

SQL DML vs RA

48

Clause Evaluation Order Relational Algebra

SELECT [DISTINCT] 4 π[*]

FROM 1 X*

WHERE 2 σ*

INTO 7 ←

GROUP BY 3 ℑ*
HAVING 5 σ*(𝜌*(ℑ*(…)))

ORDER BY 6 Can’t express

