
Introduction to SQL Data 
Manipulation Language (DML)

CSCI 220: Database Management and Systems Design
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Today you will learn…

• How the relational calculus and relational algebra are used in real-world 
databases


• How to retrieve data using SQL
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Previously: Database Changes

• You learned how to a relational schema using the SQL DDL (Structured 
Query Language Data Definition Language)


• Create the Loan table: 
CREATE TABLE loan (id INTEGER, amount MONEY) 
PRIMARY KEY (id);


• Insert into the Loan table: 
INSERT INTO loan (id, amount) VALUES (1, 100.00);
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Today: Database Queries
• How to retrieve records from a database?


• Using the SQL DML (Structured Query Language Data Manipulation Language)


• Find the record for the loan with ID 111: 
SELECT * 
FROM loan 
WHERE loan.id = 111;


• Supports sorting, queries across tables, computing averages, etc.


• Your SQL query tells the database what you want. The database (usually) 
retrieves the results as efficiently as possible.
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Schema Review
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Customer
id name

1 Jane Smith

Loan
id amount

111 100.00

Borrows
customer_id loan_id

1 111



Queries with Relational Algebra

• What loans does Jane Smith have?


• For brevity, C = customer, B = borrows, L = loan


• 


•

πloan_id, amount (σname=Jane Smith(C) ⋈C.id = B.customer_id B ⋈B.loan_id = L.id L)

πloan_id, amount (σname=Jane Smith (C ⋈C.id = B.customer_id B ⋈B.loan_id = L.id L))
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Query with Relational Calculus

• {l.id, l.amount | LOAN(l) AND 
((∃b)(∃c)(BORROWS(b) AND CUSTOMER(c) AND 
l.id = b.loan_id AND b.customer_id = c.id AND 
c.name= 'Jane Smith'))}
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Query with SQL

• SELECT loan_id, amount 
FROM customer 
JOIN borrows ON customer.id = borrows.customer_id 
JOIN loan ON borrows.loan_id = loan.id 
WHERE customer.name = "Jane Smith";
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Why Three Query Languages?

• Relational calculus: declarative specification of a query


• SQL: user-friendly declarative specification of a query


• Relational algebra: imperative specification of a query


• To evaluate SQL, the DBMS chooses between multiple candidate 
relational algebra queries
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Overview of DDL Operations
Operation Statement

Create table CREATE TABLE <name> ( <field> <domain>, … )

Drop table DROP TABLE <name>

Insert row into table INSERT INTO <name> (<field names>)

VALUES (<field values>) 

Delete row from table DELETE FROM <name> 

WHERE <condition>

Update rows in table
UPDATE <name> 

SET <field name> = <value>

WHERE <condition>
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Overview of DML Operations
• Simple: 
SELECT * FROM branch;


• Complex: 
SELECT customer.id, SUM(amount) as debt 
FROM customer 
JOIN borrows ON customer.id = borrows.customer_id JOIN 
loan ON borrows.loan_id = loan.id 
GROUP BY customer.id 
HAVING debt > 100 
ORDER BY debt;
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SELECT Documentation

12 https://www.sqlite.org/lang_select.html

https://www.sqlite.org/lang_select.html


SELECT FROM WHERE

• SELECT amount 
FROM loan 
WHERE amount > 1000 

• How does this differ from: 



• Eliminating duplicates is costly, and 
sometimes duplicates are useful

πamount (σamount>1000 (loan))
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loan
id amount

111 100.00

112 9001.00

113 2000.00

114 2000.00



DISTINCT

• If you want to eliminate duplicates:


• SELECT DISTINCT amount 
FROM loan 
WHERE amount > 1000 

• Relational algebra (RA) as we 
defined it works with sets. We 
could redefine it as a “bag algebra” 
to allow duplicates (RA*).
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loan
id amount

111 100.00

112 9001.00

113 2000.00

114 2000.00



SELECT FROM Multiple Tables
• SELECT name, loan_id 
FROM customer, borrows 
WHERE customer.id = borrows.customer_id 

• SELECT name, loan_id 
FROM customer AS c, borrows AS b 
WHERE c.id = b.customer_id 

• Similar to: 
 πname, loan_id (σcustomer.id = borrows.customer_id (customer × borrows))

πname, loan_id (customer ⋈customer.id = borrows.customer_id borrows)
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Conceptual Algorithm
• SELECT attribute1, attribute2, … 
FROM relation1, relation2, … 
[WHERE predicate] 

• FROM could be implemented as a cartesian product, 


• WHERE could be implemented as selection,  


• SELECT could be implemented as projection, 


•

×

σ

π

πa1,a2,… (σP (r1 × r2 × …))
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Advanced SELECT
• Use * to get all attributes


• Use DISTINCT to eliminate duplicates


• Use AS to rename columns


• Arithmetic operations are supported


• SELECT amount * 100 AS cents 
FROM loan 
WHERE amount > 1000
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https://www.sqlite.org/lang_select.html

https://www.sqlite.org/lang_select.html


Advanced SELECT

• Use ORDER BY to sort results:


• SELECT amount 
FROM loan 
ORDER BY amount 

• Aggregate operators are also available: AVG, MIN, MAX, SUM, COUNT, …


• SELECT SUM(amount) 
FROM loan
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https://www.sqlite.org/lang_aggfunc.html

https://www.sqlite.org/lang_aggfunc.html


Advanced WHERE
• Predicates are composed of operators, attribute names, and constants


• Basic operators: <, >, <=, >=, =, !=, AND, OR, NOT, …


• SQL-specific operators: IN, LIKE, ISNULL, BETWEEN, …


• SELECT id 
FROM loan 
WHERE amount BETWEEN 9000 AND 10000 OR amount < 10 

• SELECT name 
FROM customer 
WHERE name LIKE '% Smith'
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https://www.sqlite.org/lang_expr.html

https://www.sqlite.org/lang_expr.html


Advanced FROM

• Specifies which relation(s) to retrieve tuples from


• Can alias relations for convenience (and self-joins)


• Can directly specify joins


• SELECT name, loan_id 
FROM customer AS c JOIN borrows AS b 
ON c.id = b.customer_id
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Preview: Query Evaluation Plans
• SELECT name, loan_id 
FROM customer, borrows 
WHERE customer.id = borrows.customer_id 

• In three steps, draw on the board: 
πname, loan_id (σcustomer.id = borrows.customer_id (customer × borrows))

21

customer
id name

1 Jane Smith

2 John Smith

4 Hazel Jones

borrows
customer_id loan_id

1 111

2 111

3 222



Preview: Query Evaluation Plans
• SELECT name, loan_id 
FROM customer, borrows 
WHERE customer.id = borrows.customer_id 

• In two steps, draw on the board: 
πname, loan_id (customer ⋈customer.id = borrows.customer_id borrows)
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customer
id name

1 Jane Smith

2 John Smith

4 Hazel Jones

borrows
customer_id loan_id

1 111

2 111

3 222



Advanced SQL DML
CSCI 220: Database Management and Systems Design
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• Use the SQL DML to form these queries:


• Retrieve the names of all employees


• Retrieve the name of the employee 
with SSN = 123456789


• Retrieve the names and SSNs of the 
employees making more than $71,000


• Retrieve the name of each manager 
and the name of the department they 
manage

Practice Quiz
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employee
name ssn salary

John Smith 123 70000
Jane Smith 234 71000
Frank Wong 345 72000

department
name id mgr_ssn

Research 1 345
Administration 2 234

dept_locations
dept_id Location

1 Houston
1 Boston
2 Boston



Today you will learn…

• How to use advanced SQL DML features
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Schema Review
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Customer
id name

1 Jane Smith

Loan
id amount

111 100.00

Borrows
customer_id loan_id

1 111

Savings Account
id amount

111 100.00

Deposits
customer_id account_id

1 111



Aggregates and GROUP BY

• How to calculate the total debt of all customers?
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SELECT customer.name, SUM(amount) as debt 
FROM customer 
JOIN borrows ON customer.id = borrows.customer_id 
JOIN loan ON borrows.loan_id = loan.id 
GROUP BY customer.id



HAVING

• How to calculate the total debt of all customers?


• For only those with more than $100 of debt?
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SELECT customer.name, SUM(amount) as debt 
FROM customer 
JOIN borrows ON customer.id = borrows.customer_id 
JOIN loan ON borrows.loan_id = loan.id 
GROUP BY customer.id 
HAVING debt > 100



Views
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• How to calculate the total debt of all customers?


• Save the query as a view:

CREATE VIEW debt_view AS 
SELECT customer.id, customer.name, SUM(amount) as debt 
FROM customer 
JOIN borrows ON customer.id = borrows.customer_id 
JOIN loan ON borrows.loan_id = loan.id 
GROUP BY customer.id; 
 
SELECT * FROM debt_view;



INTO

• Copy data into a new table: 
SELECT * 
INTO customer_2024-1-1_bak 
FROM customer


• Not supported by SQLite, but equivalent to: 
CREATE TABLE customer_2024-1-1_bak AS 
SELECT * 
FROM customer

30



SERIAL

• How to assign unique identifiers to records?


• For example: customer.id, loan.id, etc.


• In PostgreSQL: 
CREATE TABLE customer (id SERIAL PRIMARY KEY, name TEXT); 
 
INSERT INTO customer (id, name) VALUES (DEFAULT, 'Jane Smith'); 
INSERT INTO customer (name) VALUES ('John Smith');


• SQLite uses AUTOINCREMENT and ROWID to similar effect
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https://www.postgresql.org/docs/current/datatype-numeric.html#DATATYPE-SERIAL
https://www.sqlite.org/autoinc.html
https://www.sqlite.org/lang_createtable.html#rowid


Review: NULL

• Databases offer a special value, NULL


• NULL can be used to represent unknown or inapplicable values


• For example, a newly hired employee’s HIRE_DATE may be NULL until it is 
decided


• Only allow NULL if you need to


• By default, all columns can contain NULL (except primary key columns)
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Locating NULL Values
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employee
id name hired

1 Peter 2023-1-1

2 Sara 2023-5-1

3 Drake NULL

Doesn’t work: 
SELECT * FROM employee 
WHERE hired = NULL

Instead: 
SELECT * FROM employee 
WHERE hired IS NULL



NULL Operations
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Expression Result

1 + NULL NULL
1 - NULL NULL

1 * NULL NULL

1 / NULL NULL

1 = NULL NULL

1 < NULL NULL

1 > NULL NULL

TRUE OR NULL TRUE

TRUE AND NULL NULL

FALSE OR NULL NULL

FALSE AND NULL FALSE

NULL AND NULL NULL

NULL OR NULL NULL

Some DBMSs use a third 
boolean state, UNKNOWN, 

instead of NULL. IMHO, 
NULL is clearer.

https://learn.microsoft.com/en-us/sql/t-sql/language-elements/null-and-unknown-transact-sql?view=sql-server-ver16


Sets vs Multisets

• Relational algebra (RA) operates on sets


• SQL DML operates on multisets (AKA, bags) 

• Duplicates are preserved (by default) 

• Relational algebra can be extended to work on multisets (RA*)
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RA* Examples

• Additive addition: 


• Bag difference: 
 



• Also think about: 

R ∪* S

R −* S
S −* R

σ*, π*, ×*
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R
A B
1 y
1 y
2 z

S
A B
1 y
2 z
3 y



SQL Set and Bag Operations
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Set Operation Bag Operation

UNION UNION ALL

INTERSECT INTERSECT ALL

EXCEPT or MINUS EXCEPT ALL or MINUS ALL

(SELECT customer_id FROM borrows) 
UNION/INTERSECT/MINUS 

(SELECT customer_id FROM deposits)



Nested Queries
• An (outer) query can contain (inner) queries in the FROM or WHERE clause


• Find loans, except those with id 222: 
SELECT id 
FROM loan 
EXCEPT (SELECT id FROM loan WHERE loan.id = 222) 

• Find the ID of the customer with the most debt: 
SELECT customer_id, MAX(debt) 
FROM 
(SELECT customer_id, SUM(amount) as debt 
FROM borrows JOIN loan ON borrows.loan_id = loan.id 
GROUP BY customer_id)
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How can this be written 
without a subquery?



Nested Queries
• An (outer) query can contain (inner) queries in the FROM or WHERE 

clause


• Find the largest loans: 
SELECT id, amount 
FROM loan 
WHERE loan.amount = (SELECT MAX(amount) FROM loan)


• (Mostly) equivalent to: 
SELECT id, amount 
FROM loan 
WHERE loan.amount >= ALL (SELECT amount FROM loan)
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Nested Queries

• Common operators: 
UNION, INTERSECT, EXCEPT, IN, ALL, ANY, EXISTS, UNIQUE 


• Bag operators (keep duplicates): 
UNION ALL, INTERSECT ALL, EXCEPT ALL
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JOINs

• We use joins to associate records across relations


• Inner joins: records without associated records are omitted


• Outer joins: records without associated records are retained 

• LEFT ⟕, RIGHT ⟖, and FULL ⟗
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Inner Join
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SELECT * 
FROM customer 
JOIN borrows ON customer.id = borrows.customer_id

Customer
id name
1 Sam Wilson
2 Steve Rogers
3 Peggy Carter

Borrows
customer_id loan_id

1 111
2 222

id name customer_id loan_id
1 Sam Wilson 1 111
2 Steve Rogers 2 222



Left Outer Join
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Customer
id name
1 Sam Wilson
2 Steve Rogers
3 Peggy Carter

Borrows
customer_id loan_id

1 111
2 222

id name customer_id loan_id
1 Sam Wilson 1 111
2 Steve Rogers 2 222
3 Peggy Carter NULL NULL

SELECT * 
FROM customer 
LEFT OUTER JOIN borrows ON customer.id = borrows.customer_id



Left Outer Join
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Customer
id name
1 Sam Wilson
2 Steve Rogers
3 Peggy Carter

Borrows
customer_id loan_id

1 111
2 222

id name customer_id loan_id
1 Sam Wilson 1 111
2 Steve Rogers 2 222

SELECT * 
FROM borrows 
LEFT OUTER JOIN customer ON customer.id = borrows.customer_id



Full Outer Join
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Customer
id name
1 Sam Wilson
3 Peggy Carter

Borrows
customer_id loan_id

1 111
2 222

SELECT * 
FROM customer 
FULL OUTER JOIN borrows ON customer.id = borrows.customer_id

(Deleted Steve Rogers)

id name customer_id loan_id
1 Sam Wilson 1 111
3 Peggy Carter NULL NULL

NULL NULL 2 222



Cross Product
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Customer
id name
1 Sam Wilson
2 Steve Rogers
3 Peggy Carter

Borrows
customer_id loan_id

1 111
2 222

SELECT * 
FROM customer, borrows

id name customer_id loan_id
1 Sam Wilson 1 111
1 Sam Wilson 2 222
2 Steve Rogers 1 111
2 Steve Rogers 2 222
3 Peggy Carter 1 111
3 Peggy Carter 2 222



Review: Kitchen Sink Query

47

SELECT customer.id, SUM(amount) as debt 
FROM customer 
JOIN borrows ON customer.id = borrows.customer_id 
JOIN loan ON borrows.loan_id = loan.id 
GROUP BY customer.id 
HAVING debt > 100 
ORDER BY debt



SQL DML vs RA
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Clause Evaluation Order Relational Algebra

SELECT [DISTINCT] 4 π[*]

FROM 1 X*

WHERE 2 σ*

INTO 7 ←

GROUP BY 3 ℑ*
HAVING 5 σ*(𝜌*(ℑ*(…)))

ORDER BY 6 Can’t express


