CS 220
Relational Algebra

## START RECORDING

■ Notify about grading

## Practice Quiz: Integrity Constraints

- What integrity constraints would be violated by the following operations, if any? (Operations don't affect each other.)

1. DELETE FROM Employee WHERE SSN = 123456789
2. DELETE FROM Employee WHERE SSN = 234567891
3. DELETE FROM Department WHERE Name = "Research"
4. DELETE FROM D_Locations WHERE Location = "Houston"
5. UPDATE D_Locations SET Location $=$ "Boston" WHERE Location = "Houston"
6. INSERT INTO Employee (Name, SSN, Salary) VALUES ("John A. Smith", 123456789, 71000)
7. INSERT INTO Employee (Name, Salary) VALUES ("John A. Smith", 71000)
8. INSERT INTO Employee (Name, SSN, Salary) VALUES ("James Smith", "Unknown", 71000)

## Employee

| Name | SSN | Salary |
| :--- | :--- | :--- |
| John Smith | 123456789 | 70000 |
| Jane Smith | 234567891 | 71000 |
| Franklin Wong | 345678912 | 72000 |

## Department

| Name | ID | Mgr_SSN |
| :--- | :--- | :--- |
| Research | 1 | 345678912 |
| Administration | 2 | 234567891 |

## Department_Locations

| D ID | $\underline{\text { Location }}$ |
| :--- | :--- |
| 1 | Houston |
| 1 | Boston |
| 2 | Boston |

## Today you will learn...

■ How to retrieve information from a relational schema

## Relational Query Languages

■ Query = "retrieval program"

- Language examples:
\& Theoretical:

1. Relational Algebra
2. Relational Calculus
a. tuple relational calculus (TRC)
b. domain relational calculus (DRC)

- Practical

1. SQL (SEQUEL from System R)
2. QUEL (Ingres)
3. Datalog (Prolog-like)

- Theoretical QL's:
- give semantics to practical QL's
- key to understand query optimization in relational DBMSs


## Chapter 8 Outline

■ Unary Relational Operations: SELECT and PROJECT

- Relational Algebra Operations from Set Theory

■ Binary Relational Operations: JOIN and DIVISION

- Additional Relational Operations
- Examples of Queries in Relational Algebra

■ The Tuple Relational Calculus
■ The Domain Relational Calculus

## The Relational Algebra and Relational Calculus

■ Relational algebra
$\downarrow$ Basic set of operations for the relational model

- Relational algebra expression
$\downarrow$ Sequence of relational algebra operations
$\square$ Relational calculus
$\$$ Higher-level declarative language for specifying relational queries


## Relational Algebra

■ Basic operators
relation
$\checkmark$ select ( $\sigma$ )
$\checkmark$ project $(\pi)$
$\checkmark$ rename ( $\rho$ )
relation

relation
$\downarrow$ union ( $\cup$ )
$\$$ set difference (-)
$\checkmark$ cartesian product ( $x$ )

- The operators take one or two relations as inputs and give a new relation as a result.


## Example Instances

$R 1$| sid | bid | day |
| :--- | :--- | :---: |
| 22 | 101 | $10 / 10 / 96$ |
| 58 | 103 | $11 / 12 / 96$ |


| bid | bname | color |
| :--- | :--- | :--- |
| 101 | Interlake | blue |
| 102 | Interlake | red |
| 103 | Clipper | green |
| 104 | Marine | red |

## Boats

Schema:
Boats(bid, bname, color)
Sailors(sid, sname, rating, age)
Reserves( sid, bid, day)

$S 1$| sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |


$S 2$| sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 28 | yuppy | 9 | 35.0 |
| 31 | lubber | 8 | 55.5 |
| 44 | guppy | 5 | 35.0 |
| 58 | rusty | 10 | 35.0 |

## Unary Relational Operations

- Unary: applied to a single relation
- project ( $\pi$ )
- select ( $\sigma$ )
- rename ( $\rho$ )


## The PROJECT Operation

$\square$ Selects columns from table and discards the other columns:

$$
\pi_{<\text {attribute list> }}(R)
$$

- Degree
* Number of attributes in <attribute list>

■ Duplicate elimination
$\$$ Result of PROJECT operation is a set of distinct tuples

## Projection

■ Examples: $\quad \pi_{\text {age }}(S 2) ; \pi_{\text {sname,rating }}(S 2)$
■ Retains only attributes that are in the "projection list".
■ Schema of result:
$\nabla^{7}$ exactly the columns in the projection list, with the same names that they had in the input relation.
$\square$ Projection operator has to eliminate duplicates
${ }^{7}$ How do they arise? Why remove them?
\$ Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

## Projection

| sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 28 | yuppy | 9 | 35.0 |
| 31 | lubber | 8 | 55.5 |
| 44 | guppy | 5 | 35.0 |
| 58 | rusty | 10 | 35.0 |


| sname | rating |
| :--- | :--- |
| yuppy | 9 |
| lubber | 8 |
| guppy | 5 |
| rusty | 10 |
| $\pi_{\text {Sname,rating }}(S 2)$ |  |

S2


## Unary Relational Operations: SELECT

- The SELECT Operation
$\$$ Subset of the tuples from a relation that satisfies a selection condition:

$$
\sigma_{<\text {selection condition }>}(R)
$$

- Boolean expression contains clauses of the form <attribute name> <comparison op> <constant value> or
- <attribute name> <comparison op> <attribute name>


## Unary Relational Operations: SELECT

- Example:

$$
\sigma_{(\text {Dno }=4 \text { AND Salary }>25000)} \text { OR }(\text { Dno=5 AND Salary }>30000)(\text { EMPLOYEE })
$$

- <selection condition> applied independently to each individual tuple $t$ in $R$
$\$$ If condition evaluates to TRUE, tuple selected
■ Boolean conditions AND, OR, and NOT


## Unary Relational Operations: SELECT

■ Selectivity
\$ Fraction of tuples selected by a selection condition

- Combine SELECT operations into a single operation with AND condition


## Selection ( $\sigma$ )

$\square$ Selects rows that satisfy selection condition.

- Result is a relation.

Schema of result is same as that of the input relation


## Selection

■ Notation: $\sigma_{p}(r)$

- $p$ is called the selection predicate, $\mathbf{r}$ can be the name of a table, or another query
- Predicate:

1. Simple
$\checkmark$ attr1 = attr2
$\checkmark$ Attr $=$ constant value

$$
\left.\nabla^{7} \text { (also, }<,>, \text { etc }\right)
$$

2. Complex
$\checkmark$ predicate1 AND predicate2
$\checkmark$ predicate1 OR predicate2
$\checkmark$ NOT (predicate)

## Rename ( $\rho$ )

■ Allows us to refer to a relation by more than one name and to rename conflicting names
Example:

$$
\rho(\mathrm{X}, E)
$$

returns the expression $E$ under the name $X$

■ Rename relation and/or attributes

$$
\rho_{S(B 1, B 2, \ldots, B n)}(R) \text { or } \rho_{S}(R) \text { or } \rho_{(B 1, B 2, \ldots, B n)}(R)
$$

## Sequences of Operations

■ In-line expression:

$\pi_{\text {Fname, Lname, Salary }}\left(\sigma_{\text {Dno }=5}(\right.$ EMPLOYEE $\left.)\right)$

■ Sequence of operations:

$$
\begin{aligned}
& \text { DEP5_EMPS } \leftarrow \sigma_{\text {Dno=5 }}(\text { EMPLOYEE }) \\
& \text { RESULT } \leftarrow \pi_{\text {Fname, Lname, Salary }}(\text { DEP5_EMPS })
\end{aligned}
$$

- Renaming:
${ }^{7} \rho($ first, last, salary)(RESULT)


## Binary Relational Operations

- Applied to two relations
- union ( $\cup$ )
- intersection ( $\cap$ )
- set difference ( - )
- cartesian product (x)


## UNION, INTERSECTION, and MINUS

■ UNION, INTERSECTION, and MINUS take two input relations, which must be union-compatible:
$\checkmark$ Same number of columns (attributes)
$\downarrow^{7}$ Corresponding columns have the same domain (type)

## UNION

■ UNION
\& RUS
$\gamma^{7}$ Includes all tuples that are either in $R$ or in $S$ or in both $R$ and $S$
*. Duplicate tuples eliminated

## INTERSECTION

- INTERSECTION
\& $R \cap S$
$\checkmark$ Includes all tuples that are in both $R$ and $S$


## MINUS

■ SET DIFFERENCE (or MINUS)

- $R-S$
$\nabla^{7}$ Includes all tuples that are in $R$ but not in $S$

| sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |


| sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 28 | yuppy | 9 | 35.0 |
| 31 | lubber | 8 | 55.5 |
| 44 | guppy | 5 | 35.0 |
| 58 | rusty | 10 | 35.0 |


| sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |
| 44 | guppy | 5 | 35.0 |
| 28 | yuppy | 9 | 35.0 |

$S 1 \cup S 2$

| sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

## Intersection

| sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

## $S 1 \cap S 2$

| sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

## Set Difference

| sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 22 | dustin | 7 | 45.0 |

$$
S 1-S 2
$$

| sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 28 | yuppy | 9 | 35.0 |
| 31 | lubber | 8 | 55.5 |
| 44 | guppy | 5 | 35.0 |
| 58 | rusty | 10 | 35.0 |


| sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 28 | yuppy | 9 | 35.0 |
| 44 | guppy | 5 | 35.0 |
| $S 2-S 1$ |  |  |  |

S2

## The CARTESIAN PRODUCT (CROSS PRODUCT) Operation

■ CARTESIAN PRODUCT
\$ CROSS PRODUCT or CROSS JOIN
$\checkmark$ Denoted by $\times$
$\checkmark$ Relations do not have to be union compatible
$\downarrow$ Useful when followed by a selection that matches values of attributes

## Cartesian-Product

S1 $\times$ R1: Each row of S1 paired with each row of R1.
Like the c.p for mathematical relations: every tuple of S1 "appended" to every tuple of R1
$\square$ Q: How many rows in the result?
■ Result schema has one field per field of S1 and R1, with field names 'inherited’ if possible.
$\checkmark$ May have a naming conflict: Both S1 and R1 have a field with the same name.
$\tau^{7}$ In this case, can use the renaming operator...

## Cartesian Product Example

| sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

## S1

| sid | bid | day |
| :---: | :--- | :---: |
| 22 | 101 | $10 / 10 / 96$ |
| 58 | 103 | $11 / 12 / 96$ |

R1

$\mathbf{S 1 ~ X ~ R 1 ~}=$| (sid) | sname | rating | age | (sid) | bid | day |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 22 | dustin | 7 | 45.0 | 22 | 101 | $10 / 10 / 96$ |
| 22 | dustin | 7 | 45.0 | 58 | 103 | $11 / 12 / 96$ |
| 31 | lubber | 8 | 55.5 | 22 | 101 | $10 / 10 / 96$ |
| 31 | lubber | 8 | 55.5 | 58 | 103 | $11 / 12 / 96$ |
| 58 | rusty | 10 | 35.0 | 22 | 101 | $10 / 10 / 96$ |
| 58 | rusty | 10 | 35.0 | 58 | 103 | $11 / 12 / 96$ |

A Complete Set of Relational Algebra Operations: Basic Operators
■ Set of relational algebra operations $\{\sigma, \pi, \cup, \rho,-, \times\}$ is a complete set
$\$$ Any relational algebra operation can be expressed as a sequence of operations from this set

## Compound Operators

$\square$ In addition to the 6 basic operators, there are several additional "Compound Operators"
\% These add no computational power to the language, but are useful shorthands.
$\nabla^{7}$ Can be expressed solely with the basic ops.

## Intersection, revisited

■ Intersection takes two input relations, which must be union-compatible.
■ Q: How to express it using basic operators?

$$
R \cap S=R-(R-S)
$$

| sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

S1

| sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 28 | yuppy | 9 | 35.0 |
| 31 | lubber | 8 | 55.5 |
| 44 | guppy | 5 | 35.0 |
| 58 | rusty | 10 | 35.0 |


| sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

## $S 1 \cap S 2$

## Intersection

S2

## THETA JOIN

■ The (Theta) JOIN Operation
$\checkmark$ Denoted by $\searrow$
$\nabla^{7}$ Combine related tuples from two relations into single "longer" tuples
ح. General join condition of the form <condition> AND <condition> AND...AND <condition>
$\nabla^{7}$ Each <condition> of the form $A_{i} \theta B_{j}$
${ }^{7} A_{i}$ and $B_{j}$ are attributes of $R$ and $S$, respectively
${ }^{r} A_{i}$ and $B_{j}$ have the same domain
$\nabla^{\prime} \theta$ (theta) is one of the comparison operators:

- $\{=,<, \leq,>, \geq, \neq\}$
* Example:

DEPT_MGR $\leftarrow$ DEPARTMENT $\bowtie_{\text {Mgr_ssn=Ssn }}$ EMPLOYEE
RESULT $\leftarrow \pi_{\text {Dname, Lname, }}$ Fname $($ DEPT_MGR)

## THETA JOIN

- Condition Join (or "theta-join"):
- Result schema same as that of cross-product.
- May have fewer tuples than cross-product.

$$
\begin{array}{r}
R \bowtie_{c} S=\sigma_{c}(R \times S) \\
\quad S 1 \bowtie{ }_{S 1 \text { sid }<R 1 \text { sid }}^{R 1}
\end{array}
$$

S1 | sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

R1 | sid | bid | day |
| :--- | :--- | :---: |
| 22 | 101 | $10 / 10 / 96$ |
| 58 | 103 | $11 / 12 / 96$ |

| (sid) | sname | rating | age | (sid) | bid | day |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 22 | dustin | 7 | 45.0 | 58 | 103 | $11 / 12 / 96$ |
| 31 | lubber | 8 | 55.5 | 58 | 103 | $11 / 12 / 96$ |

## EQUIJOIN

■ EQUIJOIN
$\nabla^{7}$ Only = comparison operator used
$\downarrow$ Always have one or more pairs of attributes that have identical values in every tuple

## NATURAL JOIN

## ■ NATURAL JOIN

$\checkmark$ Denoted by *
$\$$ Conceptually (though in practice done more efficiently):
$\checkmark$ Compute $\mathrm{R} \times \mathrm{S}$
$\downarrow$ Select rows where attributes that appear in both relations have equal values
$\checkmark$ Project all unique attributes and one copy of each of the common ones.
$\nabla^{7}$ Useful for putting "normalized" relations back together.
$\downarrow$ Removes second (superfluous) attribute in an EQUIJOIN condition

## Natural Join Example

| sid | $\underline{\text { bid }}$ | day |
| :--- | :--- | :---: |
| 22 | 101 | $10 / 10 / 96$ |
| 58 | 103 | $11 / 12 / 96$ |

R1

| sid | sname | rating | age |
| :--- | :--- | :--- | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

S1

S1 * R1 =

| sid | sname | rating | age | bid | day |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 22 | dustin | 7 | 45.0 | 101 | $10 / 10 / 96$ |
| 58 | rusty | 10 | 35.0 | 103 | $11 / 12 / 96$ |

## Inner Joins

■ Type of match and combine operation

- Defined formally as a combination of CARTESIAN PRODUCT and SELECTION
■ Join selectivity
${ }^{\pi}$ Expected size of join result divided by the maximum size $n_{R}{ }^{*} n_{S}$
■ We've seen:
$\downarrow$ THETA JOIN
$\checkmark$ EQUIJOIN
\& NATURAL JOIN


## DIVISION

$\square$ Denoted by $\div$

- Example: retrieve the names of employees who work on all the projects that 'John Smith' works on
■ Apply to relations $R(Z) \div S(X)$
$\downarrow$ Attributes of $R$ are a subset of the attributes of $S$


## DIVISION

■ Useful for expressing "for all" queries like: Find sids of sailors who have reserved all boats.
■ For $A / B$ attributes of $B$ are subset of attrs of $A$.
$\checkmark$ May need to "project" to make this happen.
$\square$ E.g., let $A$ have 2 fields, $x$ and $y ; B$ have only field $y$ :

$$
A / B=\{\langle x\rangle \mid \forall\langle y\rangle \in B(\exists\langle x, y\rangle \in A)\}
$$

$A / B$ contains all tuples ( $x$ ) such that for every $y$ tuple in $B$, there is an xy tuple in A.


Examples of Division A/B


B3


## Expressing A/B Using Basic Operators

■ Division is not essential op; just a useful shorthand.
$\nabla^{7}$ (Also true of joins, but joins are so common that systems implement joins specially.)
$\square$ Idea: For $A / B$, compute all $x$ values that are not `disqualified' by some $y$ value in $B$.
$\nabla^{7} x$ value is disqualified if by attaching $y$ value from $B$, we obtain an $x y$ tuple that is not in $A$.

Disqualified $x$ values: $\quad \pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right)$
$A / B: \quad \pi_{x}(A)-$ Disqualified $x$ values

## Operations of Relational Algebra

Table 8.1 Operations of Relational Algebra

OPERATION
SELECT

PROJECT

THETA JOIN

EQUIJOIN

NATURAL JOIN

## PURPOSE

Selects all tuples that satisfy the selection condition from a relation $R$.
Produces a new relation with only some of the attributes of $R$, and removes duplicate tuples.
Produces all combinations of tuples from $R_{1}$ and $R_{2}$ that satisfy the join condition.
Produces all the combinations of tuples from $R_{1}$ and $R_{2}$ that satisfy a join condition with only equality comparisons.
Same as EQUIJOIN except that the join attributes of $R_{2}$ are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.

## NOTATION

$\sigma_{\text {<selection condition> }}(R)$
$\pi_{\text {<attribute list> }}(R)$
$R_{1} \bowtie_{\text {<join condition> }} R_{2}$
$R_{1} \bowtie_{\text {jjoin condition> }} R_{2}, \mathrm{OR}$
$R_{1} \bowtie{ }_{\text {( <join attributes 1>), }}$
(<join attributes 2>) $R_{2}$
$R_{1}{ }^{*}$ <join condition> $R_{2}$, OR $R_{1^{*}}$ (<join attributes 1>),
(<join attributes $2>$ )
$R_{2}$ OR $R_{1} * R_{2}$

## Operations of Relational Algebra (cont'd.)

UNION
INTERSECTION

Produces a relation that includes all the tuples $\quad R_{1} \cup R_{2}$ in $R_{1}$ or $R_{2}$ or both $R_{1}$ and $R_{2} ; R_{1}$ and $R_{2}$ must be union compatible.
Produces a relation that includes all the tuples $\quad R_{1} \cap R_{2}$ in both $R_{1}$ and $R_{2} ; R_{1}$ and $R_{2}$ must be union compatible.
DIFFERENCE
Produces a relation that includes all the tuples
$R_{1}-R_{2}$ in $R_{1}$ that are not in $R_{2} ; R_{1}$ and $R_{2}$ must be union compatible.
CARTESIAN PRODUCT Produces a relation that has the attributes of $\quad R_{1} \times R_{2}$ $R_{1}$ and $R_{2}$ and includes as tuples all possible combinations of tuples from $R_{1}$ and $R_{2}$.
Produces a relation $R(X)$ that includes all tuples $R_{1}(Z) \div R_{2}(Y)$ $t[X]$ in $R_{1}(Z)$ that appear in $\mathrm{R}_{1}$ in combination with every tuple from $R_{2}(Y)$, where $Z=X \cup Y$.

## COMPANY Database



## Examples of Queries in Relational Algebra

Query 1. Retrieve the name and address of all employees who work for the 'Research' department.

RESEARCH_DEPT $\leftarrow \sigma_{\text {Dname='Research' }}($ DEPARTMENT $)$
RESEARCH_EMPS $\leftarrow($ RESEARCH_DEPT $\bowtie$ Dnumber=Dno EMPLOYEE $)$
RESULT $\leftarrow \pi_{\text {Fname, Lname, Address }}($ RESEARCH_EMPS $)$
As a single in-line expression, this query becomes:
$\pi_{\text {Fname, Lname, Address }}\left(\sigma_{\text {Dname='Research' }}\left(\right.\right.$ DEPARTMENT $\bowtie_{\text {Dnumber=Dno }}($ EMPLOYEE $\left.)\right)$

## Examples of Queries in Relational Algebra (cont'd.)

Query 2. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birth date.

```
STAFFORD_PROJS }\leftarrow\mp@subsup{\sigma}{\mathrm{ Plocation='Stafford}}{}(\mathrm{ PROJECT)
CONTR_DEPTS }\leftarrow(\mathrm{ STAFFORD_PROJS }\bowtie Dnum=DnumberDEPARTMENT)
PROJ_DEPT_MGRS }\leftarrow(\mathrm{ CONTR_DEPTS }\mp@subsup{\bowtie}{Mgr_ssn=Ssn}{*MPLOYEE)
RESULT }\leftarrow\mp@subsup{\pi}{\mathrm{ Pnumber, Dnum, Lname, Address, Bdate}}{\mathrm{ (PROJ_DEPT_MGRS)}
```


## Query Trees

- Represents the input relations of query as leaf nodes of the tree
- Represents the relational algebra operations as internal nodes

Query 2. For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birth date.

STAFFORD_PROJS $\leftarrow \sigma_{\text {Plocation='Stafford }}($ PROJECT $)$
CONTR_DEPTS $\leftarrow\left(\right.$ STAFFORD_PROJS $\bowtie{ }_{\text {Dnum=Dnumber }}$ DEPARTMENT)
PROJ_DEPT_MGRS $\leftarrow\left(\right.$ CONTR_DEPTS $\bowtie_{\text {Mgr ssn=Ssn }}$ EMPLOYEE $)$
RESULT $\leftarrow \pi_{\text {Pnumber, Dnum, Lname, Address, Bdate }}$ (PROJ_DEPT_MGRS)


Figure 8.9
Query tree corresponding to the relational algebra expression for Q2.

## Additional Ops: Generalized Projection

■ Allows functions of attributes to be included in the projection list:

$$
\pi_{F 1, F 2, \ldots, F n}(R)
$$

As an example, consider the relation
EMPLOYEE (Ssn, Salary, Deduction, Years_service)
A report may be required to show

$$
\begin{aligned}
& \text { Net Salary = Salary - Deduction, } \\
& \text { Bonus }=2000 * \text { Years_service, and } \\
& \text { Tax }=0.25 * \text { Salary }
\end{aligned}
$$

Then a generalized projection combined with renaming may be used as follows:
REPORT $\leftarrow \rho_{(\text {Ssn, Net_salary, Bonus, Tax })}\left(\pi_{\text {Ssn, Salary }}\right.$ - Deduction, $2000 *$ Years_service,
$0.25 *$ Salary (EMPLOYEE))

## Additional Ops: Aggregate Functions and Grouping

■ Aggregate functions
${ }^{7}$ Common functions applied to collections of numeric values
§ Include SUM, AVERAGE, MAXIMUM, and MINIMUM
■ Grouping
${ }^{7}$ Group tuples by the value of some of their attributes
$\downarrow$ Apply aggregate function independently to each group

$$
<\text { grouping attributes> } \mathfrak{I}_{<\text {function list> }}(R)
$$

$\rho_{R(\text { Dno, No_of_employees, Average_sal) (Dno }} \mathfrak{I}$ count Ssn, AVERAGE Salary (EMPLOYEE)).
R

| Dno | No_of_employees | Average_sal |
| :---: | :---: | :---: |
| 5 | 4 | 33250 |
| 4 | 3 | 31000 |
| 1 | 1 | 55000 |

Dno $\mathfrak{I}$ count Ssn, AVERAGE Salary (EMPLOYEE).

| Dno | Count_ssn | Average_salary |
| :---: | :---: | :---: |
| 5 | 4 | 33250 |
| 4 | 3 | 31000 |
| 1 | 1 | 55000 |

$\mathfrak{I}$ count Ssn, AVERAGE Salary (EMPLOYEE).

| Count_ssn | Average_salary |
| :---: | :---: |
| 8 | 35125 |

## OUTER JOIN Operations

## Outer joins

$\nabla$ Keep all tuples in $R$, or all those in $S$, or all those in both relations regardless of whether or not they have matching tuples in the other relation
\$ Types

- LEFT OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN
§ Example:

$$
\begin{aligned}
& \text { TEMP } \leftarrow\left(\text { EMPLOYEE } \bowtie_{\text {Ssn=Mgr_ssn }} \text { DEPARTMENT }\right) \\
& \text { RESULT } \leftarrow \pi_{\text {Fname, Minit, Lname, Dname }}(\text { TEMP })
\end{aligned}
$$

## Left Outer Join Example

R1

| sid | bid | day |
| :--- | :--- | :---: |
| 22 | 101 | $10 / 10 / 96$ |
| 58 | 103 | $11 / 12 / 96$ |

S1

| sid | sname | rating | age |
| :--- | :--- | :---: | :--- |
| 22 | dustin | 7 | 45.0 |
| 31 | lubber | 8 | 55.5 |
| 58 | rusty | 10 | 35.0 |

## S1 $\searrow \mathrm{R} 1=$

| sid | sname | rating | age | bid |
| :--- | :--- | :--- | :--- | :--- |
| day |  |  |  |  |
| 22 | dustin | 7 | 45.0 | 101 |
| 31 | lubber | 8 | 55.5 | NULL |
| NULL |  |  |  |  |
| 58 | rusty | 10 | 35.0 | 103 |

## Summary

■ Formal languages for relational model of data:
$\downarrow$ Relational algebra: operations, unary and binary operators
$\downarrow$ Some queries cannot be stated with basic relational algebra operations, but are important for practical use:

- Aggregate functions and grouping
- Recursive closure
- Next: relational calculus

