
SQL Data Definition Language
(DDL)

CSCI 220: Database Management and Systems Design

1

Today you will learn:

• How to implement a relational model using SQL

Database Changes
• How to implement your relational schema in the DBMS?

• Using the SQL DDL (Structured Query Language Data Definition
Language)

• Create the Loan table: 
CREATE TABLE loan (id INTEGER, amount MONEY)
PRIMARY KEY (id);

• Insert into the Loan table: 
INSERT INTO loan (id, amount) VALUES (1, 100.00);

3

Future: Database Queries
• How to retrieve records from a database?

• Using the SQL DML (Structured Query Language Data Manipulation Language)

• Find the record for the customer with ID 111: 
SELECT *
FROM loan
WHERE loan.id = 111;

• Supports sorting, queries across tables, computing averages, etc.

• Your SQL query tells the database what you want. The database (usually)
retrieves the results as efficiently as possible.

4

Overview of DDL Operations
Operation Statement

Create table CREATE TABLE <name> (<field> <domain>, …)

Drop table DROP TABLE <name>

Insert row into table INSERT INTO <name> (<field names>)

VALUES (<field values>)

Delete row from table DELETE FROM <name>

WHERE <condition>

Update rows in table
UPDATE <name>

SET <field name> = <value>

WHERE <condition>

5

CREATE TABLE
• Create a table, specifying columns, and constraints:

• CREATE TABLE customer (id INTEGER PRIMARY KEY, name TEXT);

• CREATE TABLE loan (id INTEGER PRIMARY KEY, amount MONEY);

• CREATE TABLE borrows (
customer_id INTEGER,
loan_id INTEGER,
PRIMARY KEY (customer_id, loan_id),
FOREIGN KEY (customer_id) REFERENCES customer(id),
FOREIGN KEY (loan_id) REFERENCES loan(id));

Customer
id name

Loan
id amount

6

Borrows
customer_id loan_id

DROP TABLE

• Remove a table and its records:

• DROP TABLE customer;

• DROP TABLE loan;

• DROP TABLE borrows;

7

INSERT INTO
• Insert records into tables:

• INSERT INTO customer (id, name)
VALUES (1, 'Jane Smith');

• INSERT INTO loan (id, amount)
VALUES (111, 100.00);

• INSERT INTO
borrows (customer_id, loan_id)
VALUES (1, 111);

8

Customer
id name

1 Jane Smith

Loan
id amount

111 100.00

Borrows
customer_id loan_id

1 111

DELETE FROM

• Delete records from tables:

• DELETE FROM borrows;

• DELETE FROM borrows
WHERE customer_id = 1;

9

Customer
id name

1 Jane Smith

Loan
id amount

111 100.00

Borrows
customer_id loan_id

1 111

UPDATE

• Update records:

• UPDATE loan
SET amount = 90
WHERE id = 111;

10

Customer
id name

1 Jane Smith

Loan
id amount

111 90.00

Borrows
customer_id loan_id

1 111

SELECT

• Useful to check which records you’ve inserted:

• SELECT * FROM customer;

• SELECT * FROM borrows;

• SELECT * FROM loan;

• Not our focus today. In another lecture, we’ll see many advanced options.

11

SQL vs DBMS Meta Commands

• SQL is (mostly) standardized

• DBMSs also offer meta commands, which are used to interact with the
DBMS command-line. For example, in SQLite:

• .help

• .tables

• .read <my_file.sql>

12

SQL Documentation

13

https://www.sqlite.org/lang_droptable.html

https://www.sqlite.org/lang_droptable.html

SQLite Quirks
• We will use SQLite in lab because it is easy to set up

• However, SQLite violates the SQL standard in significant ways

• It doesn’t check many constraints by default! For example:

• “SQLite provides developers with the freedom to store content in any
desired format, regardless of the declared datatype of the column.” “As
far as we know, SQLite is the only SQL database engine that supports
this advanced capability.”

• …maybe because other DBMSs think it’s a bad idea?

14

😉

SQLite Workarounds

• Until we switch to PostgreSQL, you should use workarounds to make
SQLite behave like a typical DMBS:

• Use the STRICT keyword to create STRICT tables which enforce types

• Enforce foreign key constraints by running this statement: 
PRAGMA foreign_keys = ON;

• IMHO, this is absolute madness! We will use PostgreSQL for the course
project.

15

https://www.sqlite.org/stricttables.html
https://www.sqlite.org/foreignkeys.html#fk_enable

SQLite Workarounds

16

$ sqlite3 test.db
sqlite> PRAGMA foreign_keys = ON;
sqlite> CREATE TABLE customer
 ...> (id INTEGER PRIMARY KEY, name TEXT) STRICT;

Troubleshooting SQL

17

Advanced SQL DDL
CSCI 220: Database Management and Systems Design

18

Practice Quiz: Constraints
• Give examples of operations that

would violate each of these
constraints:

• Primary key constraint

• Entity integrity constraint

• Referential integrity constraint

• Domain constraint

19

Customer
id name

1 Jane Smith

Loan
id amount

111 100.00

Borrows
customer_id loan_id

1 111

Today you will learn:

• How to use advanced SQL DDL features to enforce constraints

20

Constraints

• Primary key constraints

• Entity integrity constraints

• Referential integrity constraints

• New: Handling deletion  

• Domain constraints

• New: Custom checks

• New: Custom domains

• New: Global constraints

21

Review: CREATE TABLE
• Create a table, specifying columns, and constraints:

• CREATE TABLE customer (id INTEGER PRIMARY KEY, name TEXT);

• CREATE TABLE loan (id INTEGER PRIMARY KEY, amount MONEY);

• CREATE TABLE borrows (
customer_id INTEGER,
loan_id INTEGER,
PRIMARY KEY (customer_id, loan_id),
FOREIGN KEY (customer_id) REFERENCES customer(id),
FOREIGN KEY (loan_id) REFERENCES loan(id));

Customer
id name

Loan
id amount

22

Borrows
customer_id loan_id

Improvements

• Loan amounts must be non-negative and non-null

• Add (unique) email attribute

• Allow deletion of loans

• Only allow customers to hold a maximum of 5 loans

23

Add CHECK Constraints

• Ensure that loan amounts are non-negative and non-null

• ALTER TABLE loan
ADD CONSTRAINT loan_amount_non_neg
CHECK (amount >= '$0'::MONEY);

• ALTER TABLE loan
ALTER COLUMN amount SET NOT NULL;

24

View CHECK Constraints

25

\d loan
 Table "public.loan"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 id | integer | | not null |
 amount | money | | not null |
Indexes:
 "loan_pkey" PRIMARY KEY, btree (id)
Check constraints:
 "loan_amount_non_neg" CHECK (amount >= '$0.00'::money)

Remove CHECK Constraints

• ALTER TABLE loan
DROP CONSTRAINT loan_amount_non_neg;

• ALTER TABLE loan
ALTER COLUMN amount DROP NOT NULL;

26

Add Custom DOMAINs

• Ensure that loan amounts are non-negative and non-null

• CREATE DOMAIN balance AS MONEY
NOT NULL
CHECK (VALUE >= '$0'::MONEY);

• ALTER TABLE loan
ALTER COLUMN amount TYPE balance;

27

View DOMAINs

28

\d loan
 Table "public.loan"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 id | integer | | not null |
 amount | balance | | |

django=# \dD
 List of domains
 Schema | Name | Type | Collation | Nullable | Default | Check
--------+---------+-------+-----------+----------+---------+---------------------------------
 public | balance | money | | not null | | CHECK (VALUE >= '$0.00'::money)
(1 row)

Remove DOMAINs

• ALTER TABLE loan
ALTER COLUMN amount TYPE money;

• DROP DOMAIN balance;

29

Add Columns
• Add an email column

• CREATE EXTENSION citext;

• CREATE DOMAIN email AS citext
CHECK (value ~ '^[a-zA-Z0-9.!#$%&''*+/=?^_`{|}~-]
+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.
[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$');

• ALTER TABLE customer
ADD email email UNIQUE;

30

https://dba.stackexchange.com/a/165923

https://dba.stackexchange.com/a/165923

View Columns

31

django=# \d customer;
 Table "public.customer"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 id | integer | | not null |
 name | text | | |
 email | email | | |
Indexes:
 "customer_pkey" PRIMARY KEY, btree (id)
 "customer_email_key" UNIQUE CONSTRAINT, btree (email)

Remove Columns

• ALTER TABLE customer
DROP email;

• DROP DOMAIN email;

32

Foreign Keys
• Borrows has FKs to customer and loan

• By default, deletions of referenced loans are rejected

• Other options:

• Set FKs to NULL

• Cascading deletion

33

django=# DELETE FROM loan WHERE id = 111;
ERROR: update or delete on table "loan" violates foreign key constraint
"borrows_loan_id_fkey" on table "borrows"
DETAIL: Key (id)=(111) is still referenced from table "borrows".

View Foreign Keys

34

django=# \d borrows
 Table "public.borrows"
 Column | Type | Collation | Nullable | Default
-------------+---------+-----------+----------+---------
 customer_id | integer | | not null |
 loan_id | integer | | not null |
Indexes:
 "borrows_pkey" PRIMARY KEY, btree (customer_id, loan_id)
Foreign-key constraints:
 "borrows_customer_id_fkey" FOREIGN KEY (customer_id) REFERENCES customer(id)
 "borrows_loan_id_fkey" FOREIGN KEY (loan_id) REFERENCES loan(id)

Modify Foreign Keys

• ALTER TABLE borrows
DROP CONSTRAINT borrows_loan_id_fkey;

• ALTER TABLE borrows
ADD CONSTRAINT borrows_loan_id_fkey
FOREIGN KEY (loan_id) REFERENCES loan(id)
ON DELETE CASCADE;

35

Create Triggers
• Only allow Customers to hold up to 5 Loans

CREATE OR REPLACE FUNCTION check_borrows_count()
RETURNS TRIGGER AS $$
BEGIN
 IF (SELECT COUNT(*) FROM borrows WHERE customer_id = NEW.customer_id) >= 5
THEN
 RAISE EXCEPTION 'A customer can hold a maximum of 5 loans';
 END IF;
 RETURN NEW;
END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER before_insert_borrows
BEFORE INSERT ON borrows
FOR EACH ROW
EXECUTE FUNCTION check_borrows_count(); 36

View Triggers

37

django=# \dft
 List of functions
 Schema | Name | Result data type | Argument data types | Type
--------+---------------------+------------------+---------------------+------
 public | check_borrows_count | trigger | | func
(1 row)

django=# \d borrows
 Table "public.borrows"
 Column | Type | Collation | Nullable | Default
-------------+---------+-----------+----------+---------
 customer_id | integer | | not null |
 loan_id | integer | | not null |
...
Triggers:
 before_insert_borrows BEFORE INSERT ON borrows FOR EACH ROW EXECUTE FUNCTION
check_borrows_count()

Remove Triggers

• DROP TRIGGER before_insert_borrows ON borrows;

• DROP FUNCTION check_borrows_count;

38

Warning About Triggers

• Hard to implement correctly

• We should have made the trigger run on INSERT or UPDATE!

• They can negatively affect performance

• Triggers can implement global constraints (i.e., constraints which check
an arbitrary number of rows and tables)

39

Constraint Enforcement

40

Constraint Performance Cost Explanation

Domain Low Type check

Entity Integrity Low NULL check

Referential Integrity Low Should use an index

(Primary) Key Moderate Maintain and use an index

Global Low to High Arbitrary checks

Miscellaneous SQL DDL

41

Create Views

42

• Use a view to calculate a customer’s total debt conveniently

CREATE VIEW debt_view AS
SELECT customer.id, customer.name, SUM(amount) as debt
FROM customer
JOIN borrows ON customer.id = borrows.customer_id
JOIN loan ON borrows.loan_id = loan.id
GROUP BY customer.id;

Use Views

43

django=# \dv
 List of relations
 Schema | Name | Type | Owner
--------+-----------+------+--------
 public | debt_view | view | django
(1 row)

django=# SELECT * FROM debt_view;
 id | name | debt
----+------------+------------
 1 | Jane Smith | $100.00
 2 | Bill Gates | $10,000.00
(2 rows)

Remove Views

• DROP VIEW debt_view;

44

SERIAL

• How to assign unique identifiers to records?

• For example: customer.id, loan.id, etc.

• In PostgreSQL: 
CREATE TABLE customer (id SERIAL PRIMARY KEY, name TEXT);

INSERT INTO customer (id, name) VALUES (DEFAULT, 'Jane Smith');
INSERT INTO customer (name) VALUES ('John Smith');

• SQLite uses AUTOINCREMENT and ROWID to similar effect

45

https://www.postgresql.org/docs/current/datatype-numeric.html#DATATYPE-SERIAL
https://www.sqlite.org/autoinc.html
https://www.sqlite.org/lang_createtable.html#rowid

INTO

• Copy data into a new table: 
SELECT *
INTO customer_2024-1-1_bak
FROM customer

• Not supported by SQLite, but equivalent to: 
CREATE TABLE customer_2024-1-1_bak AS
SELECT *
FROM customer

46

