
Data Analysis
CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner

Gordon College

Today you will learn…

• How to analyze data stored in a relational database

Agenda

• Online Transaction Processing vs
Online Analytical Processing

• Privacy Tools Study

• If time: Map-Reduce Pattern

Online Analytical
Processing

Online Transaction Processing
(OLTP)

• Transactional data: database concerned with maintaining single focused
end-user interactions
• Examples
• Customer placing an order on an e-commerce website
• Account holder making a deposit at a bank

• Can be comprised of several rows/records of data
• Example: An order has records for the order itself, each line item, address,

payment method, etc.
• Lots of data can accumulate quickly for numerous transactions
• Needed for its own sake (i.e. shipping orders, order history, monthly account

statements, etc.
• Also useful for analysis…

• OLTP databases built and optimized for speed of transactions (both in
the ACID and interaction contexts)
• e.g. Provisioned with smaller block sizes to facilitate more precise (and

maybe quicker) read and write operations

Online Analytical Processing
(OLAP)

• Decision support systems (DSS) to help organizations determine
longer term courses of action
• Example: Not many orders for a certain product, so adjust product

offerings to better match customer desires
• Work with summaries and aggregations of raw transaction data

• OLAP user needs to have specific queries in mind
• Example: Give me a cross-tab of item type vs. color …

• Data mining: reveal patterns in data and system usage

• OLAP databases designed to handle large amounts of data
• e.g. Provisioned with larger block sizes to store and retrieve more data

in read and write operations

Data Warehouse

• Unified repository for an organization’s historical OLAP data
• Supports trending, analysis, and decision making

• Gathered from numerous disparate sources via ETL processes
• Extract: get data from individual source(s) owned or managed by

various parties

• Transform: manipulate data so that it fits into the data warehousing
schema – i.e. de-duplication, summarization

• Load: store the transformed data in the data warehouse

• Data is loaded at regular intervals
• Slightly out of date, which is fine for analytical tasks the data

warehouse is used for

OLAP Concepts

• Attribute types
• Dimension attribute: values to analyze on

• Explicit: color, size, price, customer type, etc.

• Derived: age (computed from DOB), ranges (years of experience)

• Measurement attribute: value summarized or aggregated over
various dimensions (sum, count, average, etc.)

• Cross-tab (pivot table): tool allowing easy analysis of data
along various dimensions
• Available in tools like spreadsheets

• Basic SQL is not an effective tool to produce this kind of
structure (lots of dynamic “group by” queries needed)

Example: Sales Data

id | item_name | color | size | number
------+-----------+--------+--------+--------
 1 | dress | pastel | medium | 4
 2 | skirt | dark | large | 3
 3 | skirt | dark | large | 1
 4 | dress | pastel | small | 1
 5 | pants | dark | large | 2
 6 | shirt | white | medium | 4
 7 | skirt | pastel | medium | 4
 8 | dress | dark | medium | 2
 9 | pants | pastel | large | 1
 10 | pants | dark | large | 4
 ...

Sales Data Crosstab

dark pastel white total

dress 198 177 217 592

pants 228 187 196 611

shirt 233 191 241 665

skirt 208 194 226 628

total 867 749 880 2496

Color

It
em

 N
am

e

OLAP Operations

• Basic SQL
• Aggregate functions, like sum(), count(), average()

• Group by / having clause

• SQL-99 added analytics processing operations
• Cube

• Rollup

• Rank / dense rank

Crosstab Data from CUBE
item_name | color | sum
-----------+--------+------
 dress | dark | 198
 dress | pastel | 177
 dress | white | 217
 dress | | 592
 pants | dark | 228
 pants | pastel | 187
 pants | white | 196
 pants | | 611
 shirt | dark | 233
 shirt | pastel | 191
 shirt | white | 241
 shirt | | 665
 skirt | dark | 208
 skirt | pastel | 194
 skirt | white | 226
 skirt | | 628
 | dark | 867
 | pastel | 749
 | white | 880
 | | 2496

Cube

• Structure to aggregate a single measurement
attribute across numerous dimensions
• Includes all possible combinations of dimension values

• Number of cube dimensions = number of dimensional
attributes

• Each dimension “row” includes a summary value for
the aggregate of all possible values of that dimension

• User slices cube for specific dimension values

Cube Example

Cube showing sales for various combinations of
item_name, color and size - including summaries for
all item_names, colors, and/or sizes

Cross Tabulation of Cross Tabulation of salessales by by item-nameitem-name
and and colorcolor

 The table above is an example of a cross-tabulation (cross-tab), also
referred to as a pivot-table.
 Values for one of the dimension attributes form the row headers
 Values for another dimension attribute form the column headers
 Other dimension attributes are listed on top
 Values in individual cells are (aggregates of) the values of the

dimension attributes that specify the cell.

Figure 18.3 in book

Cube Slice Example

Slice showing sales for various combinations of
item_name and color for size = medium

Slice from figure 18.3 in book

Cube Without Summaries

Sales for all possible combinations of item_name, color, size
without summaries - everything but shaded squares and
squares on bottom. (What would result from a standard SQL
query using group by).

select item_name, color, size, sum(number)
 from sales
 group by item_name, color, size;

Another Cube Slice

Sales by item_name and color - for all sizes

select item_name, color, sum(number)
 from sales
 group by item_name, color;

Yet Another Cube Slice

Sales by color and size - for all item_names

select color, size, sum(number)
 from sales
 group by color, size;

Slicing with SQL

select item_name, color, size, sum(number)
 from sales
 group by item_name, color, size;

select item_name, color, sum(number)
 from sales
 group by item_name, color;

select item_name, size, sum(number)
 from sales
 group by item_name, size;

select color, size, sum(number)
 from sales
 group by color, size;

select item_name, sum(number)
 from sales
 group by item_name;

select color, sum(number)
 from sales
 group by color;

select size, sum(number)
 from sales
 group by size;

select sum(number)
 from sales;

• 2n SQL queries needed to generate all summary
representations for a cube (where n = number of dimensions)
• For item_name, color, and size (3 dimensions), 23 = 8 queries

SQL Cube Function

• cube (dimension1, dimension2, …, dimensionn)
• Used in the group by clause

• Produces all summary representations in the cube

Cube Example

SELECT item_name,
 color,
 size,
 SUM(number)
FROM sales
GROUP BY
 CUBE(item_name, color, size);

item_name | color | size | sum
-----------+--------+--------+------
 dress | dark | large | 52
 dress | dark | medium | 77
 dress | dark | small | 69
 dress | dark | | 198
 dress | pastel | large | 72
 dress | pastel | medium | 53
 dress | pastel | small | 52
 dress | pastel | | 177
 dress | white | large | 60
 dress | white | medium | 52
 dress | white | small | 105
 dress | white | | 217
 dress | | large | 184
 dress | | medium | 182
 dress | | small | 226
 dress | | | 592
 pants | dark | large | 90
 pants | dark | medium | 80
 pants | dark | small | 58
--More--

SQL Rollup Function

• Summarize data based on the first listed dimension
• Similar to cube (which yields 2n groups) for n dimensions
• Includes all possible combinations of various dimensions and “all”

• Yields n+1 groups for n dimensions
• All the dimensions

• All dimensions except the last

• All the dimensions except the last and second to last

• rollup(dimension1, dimension2, … dimensionn)
• Used in group by clause

• “Rolling up” dimensions from right to left…

Cube vs Rollup Queries

SELECT item_name, color, size, SUM(number)
FROM sales
GROUP BY CUBE(item_name, color, size);

SELECT item_name, color, size, SUM(number)
FROM sales
GROUP BY ROLLUP(item_name, color, size);

Cube vs Rollup Results

item_name | color | size | sum
-----------+--------+--------+------
 dress | dark | large | 52
 dress | dark | medium | 77
 dress | dark | small | 69
 dress | dark | | 198
 dress | pastel | large | 72
 dress | pastel | medium | 53
 dress | pastel | small | 52
 dress | pastel | | 177
 dress | white | large | 60
 dress | white | medium | 52
 dress | white | small | 105
 dress | white | | 217
 dress | | large | 184
 dress | | medium | 182
 dress | | small | 226
 dress | | | 592
 pants | dark | large | 90
--More--

item_name | color | size | sum
-----------+--------+--------+------
 dress | dark | large | 52
 dress | dark | medium | 77
 dress | dark | small | 69
 dress | dark | | 198
 dress | pastel | large | 72
 dress | pastel | medium | 53
 dress | pastel | small | 52
 dress | pastel | | 177
 dress | white | large | 60
 dress | white | medium | 52
 dress | white | small | 105
 dress | white | | 217
 dress | | | 592
 pants | dark | large | 90
 pants | dark | medium | 80
 pants | dark | small | 58
 pants | dark | | 228
--More--

Cube Rollup

SQL Window Functions

"A window function performs a calculation across a set
of table rows that are somehow related to the current
row. This is comparable to the type of calculation that
can be done with an aggregate function. However,
window functions do not cause rows to become
grouped into a single output row like non-window
aggregate calls would. Instead, the rows retain their
separate identities. Behind the scenes, the window
function is able to access more than just the current
row of the query result."

https://www.postgresql.org/docs/13/tutorial-window.html

https://www.postgresql.org/docs/13/tutorial-window.html

Window Function Example

• Compare each employee's salary with the average
salary in their department:

SELECT depname, empno, salary,
 avg(salary) OVER (PARTITION BY depname)
FROM empsalary;

 depname | empno | salary | avg
-----------+-------+--------+-----------------------
 develop | 11 | 5200 | 5020.0000000000000000
 develop | 7 | 4200 | 5020.0000000000000000
 develop | 9 | 4500 | 5020.0000000000000000
 develop | 8 | 6000 | 5020.0000000000000000
 develop | 10 | 5200 | 5020.0000000000000000
 personnel | 5 | 3500 | 3700.0000000000000000
 personnel | 2 | 3900 | 3700.0000000000000000
 sales | 3 | 4800 | 4866.6666666666666667
 sales | 1 | 5000 | 4866.6666666666666667
 sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

https://www.postgresql.org/docs/13/tutorial-window.html

https://www.postgresql.org/docs/13/tutorial-window.html

Window Function
Components

• A window function call always contains an OVER clause
directly following the window function's name and
argument(s).
• The OVER clause determines exactly how the rows of the

query are split up for processing by the window function.

• The PARTITION BY clause within OVER divides the rows
into groups, or partitions, that share the same values of the
PARTITION BY expression(s).

• For each row, the window function is computed across the
rows that fall into the same partition as the current row.

https://www.postgresql.org/docs/13/tutorial-window.html

https://www.postgresql.org/docs/13/tutorial-window.html

Window Function Example

• See which employees are paid most/least/etc. using
rank()

SELECT depname, empno, salary,
 rank() OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

 depname | empno | salary | rank
-----------+-------+--------+------
 develop | 8 | 6000 | 1
 develop | 10 | 5200 | 2
 develop | 11 | 5200 | 2
 develop | 9 | 4500 | 4
 develop | 7 | 4200 | 5
 personnel | 2 | 3900 | 1
 personnel | 5 | 3500 | 2
 sales | 1 | 5000 | 1
 sales | 4 | 4800 | 2
 sales | 3 | 4800 | 2
(10 rows)

https://www.postgresql.org/docs/13/tutorial-window.html

https://www.postgresql.org/docs/13/tutorial-window.html

Privacy Tools Study
Smaller scale data analysis

Where to Analyze Your Data?

• Read data directly from the database
• Pros:
• A single authoritative version of your data
• Analyses can be continuously updated
• Potentially higher-performance (if data can't fit in memory)

• Alternatively, analyze a .csv file or Pandas dataframe
• Pros:
• Flexible data preprocessing
• You can use any type of analysis software (e.g., SPSS, MATLAB,

R, scipy, etc.)
• .csv files are portable and future-proof

Example: Privacy Tools Study

1. To what extent are people aware of these tools, and
how frequently do they use them?

2. How interested are people in preventing specific
privacy and security threats?

3. How accurately can people determine whether
these tools afford protection from specific privacy
and security threats?

4. What misconceptions, if any, do people have about
these tools?

https://usableprivacy.org/static/files/story_popets_2021.pdf

https://usableprivacy.org/static/files/story_popets_2021.pdf

Protocol Overview

• We recruited ~500 participants from Prolific

• Participants took a Qualtrics survey
• Django web app API randomized tools and assessment

scenarios

• Survey data was automatically imported into the
Django web app

• I reviewed written responses to ensure they were
sufficiently high-quality
• Only those who passed "attention checks" were paid

Data Analysis

• Data was exported from Django into an intermediate .csv
file
• Sensitive information was redacted (e.g., Prolific ID)
• ~200 columns

• Additional preprocessing was performed, and a Pandas
dataframe was created for analysis
• For example, income ranges were converted to 0 to 6, the

number of "correct" responses was calculated, etc.
• ~500 columns

• Automation is essential: avoid errors and document
preprocessing details!

Tool Awareness

Tool Knowledge

Tool Knowledge

Summary of Scripts
• load_survey.py

• Automatically loads survey data from Qualtrics
• Data is saved in a JSONField

• export_data.py
• Exports intermediate .csv from database

• load.py
• Uses intermediate .csv
• Computes additional columns in a Pandas dataframe
• Dataframe can be saved as a final .csv

• generate_graphs.py
• Saves all the graphs needed for paper, based on the dataframe

• calculate_stats.py
• Runs statistical tests and creates summary tables, based on the dataframe

Intermediate .csv

• id: 1627

• TOOL1: VPNs, TOOL2: Tor Browser, TOOL3: Ad blockers, TOOL4:
Antivirus software, TOOL5: DuckDuckGo, TOOL6: Private browsing

• ASSESS1_1STPERSON: the websites I visit from seeing what physical
location I am browsing from

• ASSESS1_2NDPERSON: the websites you visit from seeing what
physical location you are browsing from

• ASSESS2_1STPERSON, …

• Q121_1: Very effective, Q121_2: Unsure, Q121_3: Unsure, Q121_4: Not at
all effective, Q121_5: Unsure, Q121_6: Unsure

• …

Dataframe (final .csv)

• id: 1627

• websites_seeing_VPNS_efficacy: Very effective

• websites_seeing_TOR_BROWSER_efficacy: Unsure

• websites_seeing_AD_BLOCKERS_efficacy: Unsure

• websites_seeing_ANTIVIRUS_efficacy: Not at all effective

• websites_seeing_PRIVATE_BROWSING_efficacy: unsure

• …

Takeaways

• Think about all the ways you will use your data

• Where does the authoritative version of your data
live?
• On Qualtrics? In your database?

• If the authoritative version can't be used directly,
automate data transformations
• Otherwise, you might introduce errors into your data…

