NoSQL Databases

CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner
Gordon College




Practice Quiz:
Database Architectures

* Discuss with a neighbor:

* The pros and cons of hosting a database on multiple servers
 Describe the differences between:

» Horizontal fragmentation

 Vertical fragmentation

» Replication




Today you will learn...

 About alternatives to relational databases




Agenda

Emergence of NoSQL

NoSQL Databases
* Graph databases

- Aggregate databases: key-value, document, and wide-column
store

* Column-oriented

Related Topics

* Distributed Databases and Consistency with NoSQL
* Schema Migrations

- Polyglot Persistence

* When (not) to use NoSQL




Emergence of NoSQL




Pros and Cons of Relational
Databases

* Advantages:
« ACID: Atomicity, Consistency, Isolation, Durability
« Transactions, crash recovery, concurrency control, etc.
-+ Integration across multiple applications
> (Mostly) standard model (i.e., tables and SQL)

* Disadvantages:
*  Impedance mismatch
» Shift from integration DBs to application DBs

* Older RDBMSs were not designed for clustering

* Counterexamples: Distributed RDBMSs like CockroachDB,
Google Spanner, etc.



https://www.cockroachlabs.com/blog/what-is-distributed-sql/

Impedance Mismatch

* Different representations of data when it 1s in the
RDBMS vs 1n memory

* In-memory data structures use lists, dictionaries, nested and
hierarchical data structures

 Relational DBs store atomic values (no lists or nested
records)

* Translating between these representations can limit
developer productivity

* Object-relational mapping (ORM) can help

- However, abstraction can lead to neglect of query
performance tuning

e (Caveat: Modern RDBMS's support JSON data



https://www.postgresql.org/docs/13/functions-json.html

Impedance Mismatch
Example

ID:1001 = | orders

customer: Ann

line items:

customers
0321293533

0321601912

li
0131495054 posirdas

payment details:

Card: Amex
CC Number: 12345
expiry: 04/2001

Figure 1.1. An order, which looks like a single aggregate structure in the UI, is split into
many rows from many tables in a relational database




Integration vs Application
Databases

* Integration databases support multiple applications

» Can be problematic if the applications have very different
needs and are maintained by separate teams

« Who maintains the database?

* SQL can be limiting as the only shared layer

« Web services have become a more flexible alternative

* Application databases offer greater flexibility
+ Application is the only thing using the database
* Access to the data i1s mediated through the application's API




The Need for Clusters

The Internet created the need to store and process huge amounts
of data

Traditionally, relational databases could scale “up” (bigger
machine) , but not “out” (many machines) as well

Disk subsystem was a single point of failure
Distributing/fragmenting/sharding data was complicated
High licensing costs for many database machines and CPUs

Large web companies began developing their own alternative
technologies to deal with these issues

Google’s BigTable and Amazon’s Dynamo

Issues addressed by these solutions have become relevant to smaller
companies wanting to capture and analyze lots of data




The Emergence of NoSQL

Ironically, the term “NoSQL” was first used as a name for an open source
relational database released in the late 1990’s

Term as it 1s used today was a hastily-chosen Twitter hash tag for a
conference meet-up on the topic in 2009

No official general definition for NoSQL, but common characteristics
include:

* Does not use the relational model (mostly)
 Driven by the need to run on clusters

* Built for the need to run modern web properties
* Schema-less

More of a movement than a technology
+ Relational databases are not going away

* Polyglot persistence: use the type of data store most appropriate for the
situation




Future: Which DBMS should
you choose for your application?

Anecdote: "Relational databases can't scale as well as NoSQL"

Reality: Most applications don't need to scale beyond a single server.
For applications that do, see CockroachDB, Google Spanner, etc.

Anecdote: "Relational databases are harder to use than NoSQL"

Reality: Although relational DBs require you to define your schema,
this will probably save you effort in the long-term. A defined schema
also allows tools like the Django admin interface.

 If you wanted to, you could just store JSON in a relational DB...

Knowledge of different DBMSs is necessary for an informed
choice. My opinion: some NoSQL products offen meet a genuine
need (e.g., Redis for caching, graph DBs for complex graph
queries), while other products are usually not the best choice.




Graph Databases




Graph Databases

Excel at modeling relationships between entities

Terminology
* Node: an entity or record in the database
 Edge: a directed relationship connecting two entities
* Two nodes can have multiple relationships between them
* Property: attribute on a node or edge

Graphs are queried via traversals
* Traversing multiple nodes and edges is very fast

* Because relationships are determined when data is inserted into the
database

 Relationships (edges) are persisted just like nodes
* Not computed at query time (as in relational databases)




Graph Database Example

friend

m friend Elizabeth

employee
employee

friend | Barbara
friend i
i Databases
Cagg
’, ory
Refactoring

_NoSQL catefory
Distilled

a Database
Refactoring
or
aymfor
Ry

Figure 3.1. An example graph structure

autyor




Graph Database Example

24TY
=2104
Aopdw2

24y

29

>

friend
since=2005

yo a°3=P
32934
30

Barbara

P Elizabeth

since=1989
share=[books,movies, tweets]
Figure 11.2. Relationships with properties




Graph Database Features

Transaction support: graph can only be modified within a
transaction

No “dangling relationships” allowed

Nodes can only be deleted if they have no edges connected to
them

Availability via replication

Scaling via sharding is difficult since the graph relies heavily
on the relationships between its nodes
Fragmentation can be done using domain knowledge (i.e.

separating relationships by different geographic regions,
categories, time periods, etc. — factors don’t get traversed much)

 Traversal across shards is very expensive




Interacting with Graph

Databases
* Web services / REST APIs exposed by the database

* Language-specific libraries provided by the database vendor
Oor community

// Find the names of people who like NoSQL Distilled
Node nosglDistilled = nodelIndex.get ("name",

"NoSQL Distilled") .getSingle();
relationships = nosqglDistilled.getRelationships (INCOMING, LIKES);
for (Relationship relationship : relationships) {

likesNoSQLDistilled.add(relationship.getStartNode())
}

* Query languages — allow for expression of complex queries
on the graph

Gremlin with Blueprints (JDBC-like) database connectors
Cypher (for neo4j)




Graph Database Query
Language Example

* A “select” statement in Cypher

START beginingNode = (beginning node specification)

MATCH (relationship, pattern matches)

WHERE (filtering condition: on data in nodes and relationships)
RETURN (What to return: nodes, relationships, properties)

ORDER BY (properties to order by)

SKIP (nodes to skip from top)

LIMIT (limit results)

Find the names and locations of Barbara’s friends

* Cypher

START barbara = node:nodelndex (name = "Barbara")
MATCH (barbara)-[:FRIEND]->(friend node)
RETURN friend node.name, friend node.location

* Gremlin

g = new Neo4jGraph(‘/path/to/graph/db’)
barbara = g.1idx(T,v) [ [name:’Barbara’]]
friends = barbara.out(‘friend’) .map




Using Graph Databases

» Use graph databases for...

* Connected data in link-rich domain (i.e., friends, colleagues,
employees, customers, etc.)

* Routing or dispatch applications with location data (i.e., maps,
directions, distances)

* Recommendation engines (i.e., for products, dating services,
etc.)

* Don’t use graph databases for...

- Applications where many or all data entities need to be updated
at once or frequently

» Data that needs lots of partitioning




Popular Graph Databases

.Neoqj

ArangoDB

Supports graph, key-value, and
document-based access patterns

https://en.wikipedia.org/wiki/Graph database#l.ist of graph databases



https://en.wikipedia.org/wiki/Graph_database

Aggregate Data Models




Aggregate Data Models

Aggregate: a collection of related objects treated as a unit
Particularly for data manipulation and consistency management

Aggregate-oriented database: a database comprised of aggregate data
structures

Supports atomic manipulation of a single aggregate at a time

Makes it simple to scale out across clusters

« Aggregates make natural units for replication and fragmentation/sharding
Aggregates match up nicely with in-memory data structures

Use a key or ID to look up an aggregate record

An aggregate-ignorant data model has no concept of how its
components can aggregate together (e.g., relational and graph DBs)

Can efficiently support query data in multiple ways, but makes it more
challenging to scale across clusters




Aggregate Database Example:
An Initial Relational Model

Customer

1

Order

m
—T
1
*

*

Order Payment
Billing

Address cardNumber

txnld

* ——

1

Address

street
city
state 1

post code shipping Address
—

Figure 2.1. Data model oriented around a relational database (using UML
notation [Fowler UML])




Aggregate Database Example:
An Aggregate Data Model

// in customers

{

n"ige: l,

name "name":"Martin",

"billingAddress":[ { "city":"Chicago"}]
}

Customer

billing Address | %
Address

// in orders

{
* % | order payment

"idn:99,
street 1 Order Item Payment “oustomerids:l,
city

—_ "orderItems":[
state shipping Address price ccinfo {

post code txnid "productId":27,

N — * —
1| billing Address price": 32.45,

"productName": "NoSQL Distilled"
}

] r
"shippingAddress":[{ "city":"Chicago"}]
S "orderPayment" :[
{
Figure 2.3. An aggregate data model "ccinfo":"1000-1000-1000-1000",
"txnId":"abelif879rft",

"billingAddress": { "city": "Chicago"}




Aggregate Database Example:
Another Aggregate Model

Customer // in customers

{
name

"customer": {

"id": 1,
"name": "Martin",
"billingAddress": [{ "city": "Chicago"}],
"orders": [
{
billing Address | % ::ld"=99'
customerId":1,

"orderItems":[
street 1 {

city Rie "productId":27,
state shipping Address

” < ”we.
post code - #* | order payment price": 32.45, . .
_— "productName": "NoSQL Distilled"
billing Address Order Item Payment }
price ceinfo 1,
txnld "shippingAddress":[{ "city":"Chicago"}]
* "orderPayment" :[
{
"ccinfo":"1000-1000-1000-1000",
"txnId":"abelif879rft",
"pillingAddress": { "city": "Chicago"}
11y
}]

Address

Figure 2.4. Embed all the objects for customer and the customer’s orders !}
}




Aggregate-Oriented Databases

Key-value databases

» Stores data that 1s opaque to the database

» The database cannot see the structure of records, just has a key to access
a record

* Application needs to deal with this
+ Allows flexibility regarding what is stored (i.e., text or binary data)

Document databases
» Stores data whose structure is visible to the database

» Imposes limitations on what can be stored
» Allows more flexible access to data (i.e., partial records) via querying

Both key-value and document databases consist of aggregate
records accessed by ID values




Aggregate-Oriented Databases

e Wide-column databases

- Two levels of access to aggregates (and hence, two pars to the
“key” to access an aggregate’s data)

* ID: to look up aggregate record

* Column name: either a label for a value (name) or a key to a list entry
(order id)

* Columns are grouped into column families




Relationships in Aggregate
Databases

« Aggregates contain ID attributes to related aggregates
Require multiple database accesses to traverse relationships
* One to lookup ID(s) of related aggregate(s) in main aggregate
* One to retrieve each of the related aggregates

Many NoSQL databases provide mechanisms to make
relationships visible to the database (to make link-walking easier)

* Atomicity is limited to each aggregate, so updates to

relationships require the application to maintain consistency
(which 1s difficult!)

» Aggregate databases become awkward when it 1s necessary to
navigate around many aggregates




Comparison of Data
Management Capabilities

Key-value databases
* Opaque data store
+ Almost no capabilities requiring value introspection

Document databases
* Transparent data store

- Some advanced capabilities (e.g., partial record queries, indexes)

Wide-column databases
 Transparent data store and dynamic schema
* Some advanced capabilities (e.g., key spaces, query languages)

Relational databases
+ Static uniform schema
* Many advanced capabilities (e.g., integrity constraints, indexes, etc.)




Schema-less Databases

 Common to many NoSQL databases — also called emergent schemas

« Advantages
* No need to predefine data structure
* Good support for non-uniform data

* Disadvantages

+ Potentially inconsistent names and data types for a single value

« Example: "quantity, Quantity, QUANTITY, qty, count, ..." or "5, 5.0, five, V ..."

» The database does not enforce these things because it has no knowledge of the
implicit schema

* Management of the implicit schema migrates into the application layer

» Failure to do this properly can lead to hard-to-catch bugs (e.g., a bug affecting all
customers who registered from Jan 15t 2018 until July 4% 2019)

* Need to look at code to understand what data and structure is present
* No standard location or method for implementing the logic to do this
* What do you do if multiple applications need access to the database?




Key-Value Databases




Key-Value Databases

Key-value store 1s a simple hash table

* Records accessed via key
« Akin to a primary key for relational database records
* Quickest (or only) way to access a record

* Values can be of any type
 Like blob data type in relational database

Operations:
* Get a value for a given key

* Set (or overwrite or append) a value for a given key
* Delete a key and its associated value




Key-Value Database Features

e No ACID transactions

* Though each operation 1s atomic (e.g., set), a series of operations
are unrelated (like autocommit)

* Weak consistency and durability
» Default configuration is aimed at high performance

* Some options for higher durability (e.g., more frequent writes to disk,
synchronous writes)

* Scale by both fragmentation and replication
 Shard by key values (using a uniform function)
 Replicas should be available in case a shard fails

e Otherwise, all reads and writes to the unavailable shard fail




Interacting with Key-Value
Databases

* Applications can only query by key, not by values in the
data

* Design of key 1s important
* Must be unique across the entire database

* Bucket can provide an implicit top-level namespace (e.g.,
university_, loans_, etc.)

» Expiration times can be assigned to key-value pairs
* Good for storing transient data




Interacting with Key-Value
Databases

How and what data gets stored is managed entirely by the
application

Single key for related data structures
» Key incorporates identification data (i.e. user_<sessionID>)

* Data can include various nested data structures (i.e. user data including
session, profile, cart info)

« All data is set and retrieved at once

Multiple keys for related data structures

* Key incorporates name of object being stored (i.e.
user_<sessionID>_profile

» Multiple targeted fetches needed to retrieve related data

* Decreases chance of key conflicts (aggregates have their own specific
namespaces)




Key-Value Aggregate
Examples

<Bucket = userData>

<Key = sessionID>

<Value = Object>

UserProfile <Bucket = userData>

<Key = sessionID_userProfile>

SessionData

<Value = UserProfileObject>

ShoppingCart

Figure 8.2. Change the key design to segment the data in a single bucket.
CartItem

CartItem

Figure 8.1. Storing all the data in a single bucket




Using Key-Value Databases

* Use key-value databases for:
* Caching
 Transient data

» Data accessed via a unique key (i.e., page 1d, session, user
profile, shopping cart, etc.)

* Don’t use key-value databases for:
 Relationships among data
* Multi-operation transactions
* Operations on sets of records
* Querying by data (value instead of key)




Popular Key-Value Databases

&P redis .

Memcached




Practice Quiz:
Aggregate Data Models

* Working with a neighbor, draw one or more aggregates to
represent the following information:
» Alice has borrowed a book, "Through the Looking-Glass," by

Lewis Carroll (ISBN: 1949460894, copy number 2, accession
number 4837). The book 1s due back on December 15, 2021.




Document Databases




Document Databases

Store of documents with keys to access them

+ Similar to key-value databases except...

* Can see and dynamically manipulate the structure of the documents
* Often structured as JSON (textual) data
* Each document can have its own structure (non-uniform)

* Each document 1s (automatically) assigned an ID value (_id)

Consistency and transactions apply to single documents

- If this 1sn't sufficient for your application, then document databases
are a poor fit

Replication and sharding are by document

Queries to documents can be formatted as JSON
* Able to return partial documents




Document Database Example
// in order collection SQL

[{ select * from order db.order.find()

“customerId”:12345, *
“orderId”: 67890, select * from order db.order.find({

“orderDate:”2012-12-06", where customerld = 12345 “customerld”:12345
“items”: [{ 5
“product” : { select orderld, orderDate db.order.find(
“id”:112233, from order {“customerld”:12345},

“name”:”Refactoring”, where customerld = 12345 {“orderld”:1,”orderDate”:1}
“price”:”15.99” )

Yy

“discount”:”10%"”

Yy

{

“product”:{
“id”:223344,
“name” :”NoSQL Distilled”,
“price”:”24.99”

select * db.order.find({
from order “items.product.name”:
natural join orderltem ”/Refactoring/”
natural join product p })
where p.name like ‘%Refactoring%’

Yo
“discount”:”73.00",

7 ”

“promo-code” :”cybermonday”




Using Document Databases

* Document databases can be used for...
- Content management or blogging platforms
* Web analytics stores
+ E-commerce applications

- Event logging: central store for different kinds of events with various
attributes

e ...butrelational databases can be used for many of the same
things

* Do not use document databases for...
 Transactions across multiple documents (records)
* Ad hoc cross-document queries




Popular Document Databases

Supports graph, key-value, and
document-based access patterns
CouchDB




Wide-Column Store
Databases




Wide-Column Store Databases

Structure of data records:

* Records are indexed by key

* Columns are grouped into column families (like RDBMS tables)
+ Efficient support for sparse data

Data access:
+ Get, set, delete operations
* Query language (e.g., CQL: Cassandra Query Language)

Also known as column-based or column family
* Not the same as column-oriented




Wide-Column Store Database
Example

column family von by column value

NN

name "martin”

bilingAddress data ..

payment data ..

ODR1001 data ..

ODR1002 data ..

ODR1003 dala ..

ODR1004 data ..

Figure 2.5. Representing customer information in a column-family structure




Wide-Column Store Database

event

appName:Atlas eventName:Login appUser:wspirk
fc9866e48cab ua 9 PP p

Figure 10.2. Event logging with Cassandra

CREATE COLUMNFAMILY Customer (
KEY varchar PRIMARY KEY,
name varchar,
city wvarchar,
web varchar);

INSERT INTO Customer (KEY,name,city,web)
VALUES ('mfowler',
'Martin Fowler',
'Boston',
'www.martinfowler.com') ;

SELECT * FROM Customer;

SELECT name,web FROM Customer WHERE city='Boston’




Using Wide-Column Store
Databases

o Useful for:

 Big data (e.g., web crawling)
* Sparse data

* Not useful:
- If only a few database servers are needed
* For systems requiring ACID transactions
» For flexible access patterns (e.g., joins between tables)




Popular Wide-Column Store
Databases

Open Source Cloud Services

$ - Google Cloud Bigtable
| - Amazon DynamoDB

cassandra
HERSE A

aCCUrT? O




Column-Oriented
Databases




Storage of a Row-Oriented
Database

One block

One row

I
ia email lsalary lid |email lselary |
|

Consider: SELECT salary FROM info WHERE email = a@gmail.com

Consider a query including: sum (salary)




Storage of a Column-Oriented
Database

One block

One key-value pair

I
ia email i lemal lid_lemal
|

One block

One key-value pair

I
i salary Jid salary lid sy |
' |

Consider: SELECT salary FROM info WHERE email = algmail.com
Consider a query including: sum (salary)




Using Column-Oriented
Databases

o Useful for:

+ Time series data
* OnLine Analytical Processing: OLAP (e.g., event
logging and analysis)
* Not useful for:

* OnLine Transaction Processing: OLTP (e.g., financial
transactions)




Popular Column-Oriented
Databases

&) influxdb

mane?db

Amazon Redshift




NoSQL Design Activity




NoSQL Design Activity

Working with your project team:

Identify a NoSQL DB that might serve a purpose for your

application. Describe how you might use 1t, and the pros and
cons of using it in combination with or instead of a
relational database:

+ Key-value store (e.g., for caching or transient data)

* Document database (think about possible aggregates)
* Wide-column store (e.g., for big data or sparse data)

* Column-oriented database (e.g., for analytics)

* Graph database (e.g., for recommendations)




Relational vs NoSQL
Migrations




Schema Migrations

The structure of data changes regardless of what kind of
database it resides in

System requirements evolve and the supporting database(s)
must keep pace

Transition phase. period of time in which the old and new
schema versions must be maintained in parallel

For example: suppose our application originally only allowed
customers to store a shipping address and a billing address

Now, customers can have multiple shipping and billing addresses
Converting two one-to-one relationships to one-to-many




Schema Migration Challenges

Minimize transition phase

* How can all data be migrated as quickly as possible?
* Does all data need to be migrated?

Avoid downtime of production databases

 Challenging to avoid for large systems, as DDL to alter structure often
requires locking entire tables

Ensure database remains usable to all applications during transition
phase

» Different applications will integrate the schema changes at different
times

* Don’t cause errors
* Don’t corrupt or lose data




Schema Changes 1n Relational
Databases

Must keep database and applications in sync
* Schema changes applied separately to database and applications

Schema changes need to be applied in the correct order

Need to ensure that schema changes can be rolled back if
there 1s a problem

Schema changes need to be applied to all environments in the
same fashion

- Development, test, staging, production




Database Migration
Frameworks

Logic to execute each schema change is stored in a file which
contains a version string

Scripts to generate initial database or take a “snapshot” of the current
structure of an existing database get the initial version (if the database
already exists)

May contain logic to upgrade and downgrade the database to/from
its version

Migration framework is responsible for applying changes up/down
to a certain version of the database in the right order

Can be integrated into the project build process so it automatically
gets executed in various environments when a new version of the
application 1s introduced there




MiniFacebook Migrations

1. Generate migrations
* python manage.py makemigrations

2. Apply migrations
- python manage.py migrate

* Example:
django/djangoproject/minifacebook/migrations/0001 initial.py
django/djangoproject/minifacebook/migrations/0002 alter status options.py

django/djangoproject/minifacebook/migrations/0003 poke.py




Migration Python Code

0001_initial.py

from django.db import migrations, models
import django.db.models.deletion
import uuid

class Migration(migrations.Migration) :
initial = True
dependencies = []
operations = |
migrations.CreateModel (
name="'Profile',
fields=[
('id', models.UUIDField(default=uuid.uuid4, editable=False,
primary key=True, serialize=False)),
("first name', models.CharField(max length=100)),
('"last name', models.CharField(max length=100)),
('"email', models.EmailField(max length=254)),
("activities', models.TextField()),

I
)




Migration SQL Code

> python manage.py sglmigrate minifacebook 0001
BEGIN;

-— Create model Profile

CREATE TABLE "minifacebook profile" ("id" uuid NOT NULL PRIMARY KEY, "first name"
varchar (100) NOT NULL, "last name" varchar (100) NOT NULL, "email" varchar(254) NOT NULL,
"activities" text NOT NULL) ;

-— Create model Status

CREATE TABLE "minifacebook status" ("id" uuid NOT NULL PRIMARY KEY, "message" text NOT
NULL, "date time" timestamp with time zone NOT NULL, "profile id" uuid NOT NULL);
ALTER TABLE "minifacebook status" ADD CONSTRAINT

"minifacebook status profile id dfb04eSb fk minifaceb" FOREIGN KEY ("profile id")
REFERENCES "minifacebook profile" ("id") DEFERRABLE INITIALLY DEFERRED;

CREATE INDEX "minifacebook status profile id dfb04e9%bo" ON "minifacebook status"
("profile id");

COMMIT;




Schema Changes 1n a NoSQL
Store

Implicit schema: the database may be “schema-less,” but the application
still must manage the way data is structured

Incremental migration: read from both schemas and gradually write
changes

* Read methodology:

* Read the data from the new / updated field(s)

 If the data is not in the new field(s), read it from the old ones
+ Write methodology:

* Write data only to the new field(s)

* QOld field may be removed
* Some data may never be migrated

Changes to top-level aggregate structures are more difficult

- Example: make nested order records (inside customers) into top-level
aggregates

- Application must work with both old and new structures




Incremental Migration
Example

product

price
fullPrice
discountedPrice

product
fullPrice :
discountedPrice | Final Schema:

Figure 12.6. Transition period of schema changes




Relational vs NoSQL
Migrations

* If you are willing to accept a small amount of downtime (to
restart your web application), automatic migrations from a
framework like Django are a clear win

If downtime 1s unacceptable, then regardless of your DBMS
your application code will need to support data in both the
old and new schemas

With a relational database, after the migration has finished you
can remove the code supporting the old data format

With incremental migrations in NoSQL, you may need to
support data in both schemas indefinitely

e Could get messy over the years...




Practice Quiz:
Project Check In

* Working with your project team:

* Review the Homework 12 and 13 Project Milestones

» List the items you still need to complete, and make a plan to
divide the work




Today you will learn...

« About the tradeoffs of enforcing ACID properties

« How to choose between relational DBs and NoSQL




Related Issues




Review: Distribution Models

Single server: simplest model, everything on one node

Sharding: storing different data on different nodes (AKA,
fragmentation)

Auto-sharding: some databases handle the logistics of sharding so that
the application does not have to

Replication: duplicate data on multiple nodes

Primary-standby replication: primary node is responsible for updates,
standby node(s) support reads (AKA, master-follower)

Peer-to-peer replication:

* All nodes do reads and writes, and communicate changes to other nodes
(AKA, multi-master)

* Pros: Eliminates any one master as a single point of failure

 Cons: maintaining consistency can be challenging (e.g., write-write
conflicts, when two users update the same data item on separate nodes)




Review: ACID

Atomicity: either all of the transaction completes, or
none of it completes

 If any part of the transaction fails, all effects of it must be
removed from the database

Consistency: database ends the transaction in a consistent
state (provided it started that way)

Isolation: concurrently executing transactions must be
unaware of each other (as if they ran serially)

* It should look to one as if the other has not started or has
already completed

Durability: a transaction’s effects must persist in the
database after it completes




Two Forms of Consistency

Update consistency: ensuring serial database changes

Read consistency: ensuring users read the same value for data
at a given time

Note: These are related to ACID's "consistency," but slightly
different




Update Consistency

Ensuring serial database changes

Pessimistic approach: prevents conflicts from occurring (i1.e.
locking)

Optimistic approach: detects conflicts and sorts them out (i.e.
validation)

» Conditional update: just before update, check to see if the value
has changed since last read

* Write-write conflict resolution: automatically or manually merge
the updates

Trade-off between safety and “liveness” (responsiveness)




Read Consistency

Ensuring users read the same value at a given time
Logical consistency: consistent between reads on a single node

Replication consistency: consistency between replicas
- Eventual consistency, not immediate

- Challenge: if a user makes a change, they expect to see the change
(AKA, read-your-writes consistency)

* Potential solution: Session affinity: assign a user's session to a
given database node (AKA, sticky sessions)




CAP Theorem

* Pick two of these three:

- Consistency: ensure update consistency (serial database
changes), and read consistency (data becomes visible to all
readers simultaneously)

» Availability: if you can talk to a node, you can read and write

- Partition tolerance: cluster can continue operating even if a
network fault divides it into multiple isolated partitions

* For distributed systems it's "pick two," because partitions can
happen to any distributed system

« If you have just one server, it cannot be partitioned, so you can
get both consistency and availability




CAP Explained

* To continue operating despite a network partition (partition
tolerance), we need to trade off consistency of data vs.
availability

 If we want to support writes (availability) while the partitions cannot
communicate, their data will become inconsistent

 If we want to keep the data in both partitions consistent, we cannot
continue servicing requests




Diluting ACID:
Relaxed Consistency

« If a network partition occurs, suppose we choose availability
over consistency. For example:

A user's shopping cart becomes unavailable, so a new cart 1s
created. At checkout, user 1s prompted to merge carts.

Allow two users to book a flight/hotel/etc. at the same time. It
might be okay 1f there is an overbooking if extra seats/rooms/etc.
can be made available.

Counterpoint: supporting relaxed consistency requires
complex application logic. Fast recovery from partitions (less
than 10 seconds) can ensure consistency, while having high
availability.

Further reading: The Limits of the CAP Theorem



https://www.cockroachlabs.com/blog/limits-of-the-cap-theorem/

Diluting ACID:
Relaxed Durability

* Replication durability: what happens if primary node receives
an update, but 1t cannot communicate with a standby node?

Not necessary to communicate with all standbys to preserve
strong durability; just a large enough quorum

* But what if you are willing to sacrifice durability?

You can achieve higher performance by writing to disk less
frequently

Perhaps a good choice for:

Telemetry (e.g., performance statistics): you wouldn't want your
webpages to hang if the telemetry server went down anyway

Session data: updated very frequently, and a critical determiner of site
responsiveness. Only a little annoying to customers if they lose a few
minutes of recent browsing history, etc.



Polyglot Persistence




Polyglot Persistence

* Pick the best tool for the job: different databases are designed
for different types of data

* Example:

* Many e-commerce sites run entirely on a relational database
* Alternatively:
« Keep order processing data in the RDBMS

* Session and shopping cart data could be separated into a key-value
store

* More transient data which can be copied to RDBMS once an order is placed
» Customer social data could reside in a graph database

« Designed specifically to optimize traversing relationships between data,
perhaps for recommendations




Polyglot Persistence Example

e-commerce
platform

TN TN

Shopping cart Inventory Customer
and session and social

data Item Price graph

Completed
Key-Value Orders Graph store

store i

Document RDBMS
store (Legacy DB)

Figure 13.3. Example implementation of polyglot persistence




Web Service Wrappers for
Data Stores

Advantages over direct access to data store:

 Easier and cleaner to integrate the data store with multiple
applications

+ Allows database structure to change without needing to update
applications that use it

* Potentially even change the database itself

Drawbacks:
* Overhead of another layer

* Sometimes modifying a web service still requires changing
applications that use it (reduces this likelihood)




Web Service Wrapper
Example

e-commerce platform

2 N\

Shopping cart
and session

Inventory

and

gars Item Price

p

a 2 "N\
Session storage
service

Key-Value
store

social graph

Customer

Completed
Orders

AN

r

J Inventory and

& : 20 : .
Order persistence Price service

store

N
Nodes and

Relations service

[Eraph stoié]
. J

service
RDBMS
EDocumentj Eegacy DB]
"
" =

Figure 13.5. Using services instead of talking to databases




Which DBMS should
you choose?

For a given purpose, do you use relational or NoSQL?




When You Should Use
NoSQL

 When you need to perform complex graph queries, use a
graph database

 When you have weak consistency or durability needs
 For caching, use a key-value store
 For telemetry, use:

 InfluxDB for time series data (column oriented)
 Elasticsearch for log data (supports fast text searches)




When You Might Use NoSQL

Potentially: when your application only needs to support limited
access patterns.

This might be the case if your data is mainly collected or displayed in
terms of aggregates

Debatable: if your data includes complex, nested, or hierarchical
structures; or 1f your data 1s non-uniform

You could simply de-normalize or store JSON 1n a relational DB. Can
even get better performance this way.

Debatable: programmer productivity

Easier to prototype with an implicit schema, but much harder to
maintain. And again, you could simply use JSON in a relational DB.

Debatable: scalability

Distributed relational databases (e.g., CockroachDB, Google Spanner,
Google F1), etc. show you can get scalability and consistency



https://medium.com/nerd-for-tech/the-dark-side-of-the-mongodb-f66f198a566b
https://medium.com/nerd-for-tech/the-dark-side-of-the-mongodb-f66f198a566b

When Not to Use NoSQL

When you need ACID (e.g., transferring money between accounts)

When many difterent applications with different developers/owners
will access the data (i.e., integration databases)

Relational databases support strong security measures at the database
level to protect data

An explicit schema serves as documentation
However, today web-services are considered a better practice

If you don't have a good reason to use NoSQL

Relational databases are well-known, mature, and have lots of tools
(e.g., the Django admin interface)

ORM can cut down on impedance mismatch

Much easier to switch from a well-designed relational schema to an
implicit NoSQL schema — potentially impossible to do the reverse




My Recommendations

Relational database for primary data storage

Key-value stores for caching

Graph databases for data exploration, recommendations, etc.
Column-oriented databases for telemetry

Wide-column store databases for big data

Generally, avoid document databases

* Much easier to switch from an explicit schema to an implicit schema
than vice versa

 Perhaps tempting to rapid-prototype with an implicit schema, but all-
too-often, prototypes are deployed to production...




Further Reading

https://www.cockroachlabs.com/docs/stable/cockr
oachdb-in-comparison.html

https://www.arangodb.com/2018/02/nosql-
performance-benchmark-2018-mongodb-postgresql-
orientdb-neo4j-arangodb/

Flowchart (linked from schedule)



https://www.cockroachlabs.com/docs/stable/cockroachdb-in-comparison.html
https://www.cockroachlabs.com/docs/stable/cockroachdb-in-comparison.html
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/

