
NoSQL Databases
CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner

Gordon College

Practice Quiz:
Database Architectures

• Discuss with a neighbor:
• The pros and cons of hosting a database on multiple servers

• Describe the differences between:
• Horizontal fragmentation

• Vertical fragmentation

• Replication

Today you will learn…

• About alternatives to relational databases

Agenda

• Emergence of NoSQL

• NoSQL Databases
• Graph databases
• Aggregate databases: key-value, document, and wide-column

store
• Column-oriented

• Related Topics
• Distributed Databases and Consistency with NoSQL
• Schema Migrations
• Polyglot Persistence
• When (not) to use NoSQL

Emergence of NoSQL

Pros and Cons of Relational
Databases

• Advantages:
• ACID: Atomicity, Consistency, Isolation, Durability
• Transactions, crash recovery, concurrency control, etc.

• Integration across multiple applications
• (Mostly) standard model (i.e., tables and SQL)

• Disadvantages:
• Impedance mismatch
• Shift from integration DBs to application DBs
• Older RDBMSs were not designed for clustering
• Counterexamples: Distributed RDBMSs like CockroachDB,

Google Spanner, etc.

https://www.cockroachlabs.com/blog/what-is-distributed-sql/

Impedance Mismatch

• Different representations of data when it is in the
RDBMS vs in memory
• In-memory data structures use lists, dictionaries, nested and

hierarchical data structures
• Relational DBs store atomic values (no lists or nested

records)
• Translating between these representations can limit

developer productivity

• Object-relational mapping (ORM) can help
• However, abstraction can lead to neglect of query

performance tuning

• Caveat: Modern RDBMS's support JSON data

https://www.postgresql.org/docs/13/functions-json.html

Impedance Mismatch
Example

Integration vs Application
Databases

• Integration databases support multiple applications
• Can be problematic if the applications have very different

needs and are maintained by separate teams
• Who maintains the database?

• SQL can be limiting as the only shared layer
• Web services have become a more flexible alternative

• Application databases offer greater flexibility
• Application is the only thing using the database

• Access to the data is mediated through the application's API

The Need for Clusters

• The Internet created the need to store and process huge amounts
of data

• Traditionally, relational databases could scale “up” (bigger
machine) , but not “out” (many machines) as well
• Disk subsystem was a single point of failure
• Distributing/fragmenting/sharding data was complicated
• High licensing costs for many database machines and CPUs

• Large web companies began developing their own alternative
technologies to deal with these issues
• Google’s BigTable and Amazon’s Dynamo
• Issues addressed by these solutions have become relevant to smaller

companies wanting to capture and analyze lots of data

The Emergence of NoSQL
• Ironically, the term “NoSQL” was first used as a name for an open source

relational database released in the late 1990’s

• Term as it is used today was a hastily-chosen Twitter hash tag for a
conference meet-up on the topic in 2009

• No official general definition for NoSQL, but common characteristics
include:
• Does not use the relational model (mostly)
• Driven by the need to run on clusters
• Built for the need to run modern web properties
• Schema-less

• More of a movement than a technology
• Relational databases are not going away
• Polyglot persistence: use the type of data store most appropriate for the

situation

Future: Which DBMS should
you choose for your application?

• Anecdote: "Relational databases can't scale as well as NoSQL"
• Reality: Most applications don't need to scale beyond a single server.

For applications that do, see CockroachDB, Google Spanner, etc.

• Anecdote: "Relational databases are harder to use than NoSQL"
• Reality: Although relational DBs require you to define your schema,

this will probably save you effort in the long-term. A defined schema
also allows tools like the Django admin interface.

• If you wanted to, you could just store JSON in a relational DB…

• Knowledge of different DBMSs is necessary for an informed
choice. My opinion: some NoSQL products often meet a genuine
need (e.g., Redis for caching, graph DBs for complex graph
queries), while other products are usually not the best choice.

Graph Databases

Graph Databases

• Excel at modeling relationships between entities

• Terminology
• Node: an entity or record in the database
• Edge: a directed relationship connecting two entities
• Two nodes can have multiple relationships between them

• Property: attribute on a node or edge

• Graphs are queried via traversals
• Traversing multiple nodes and edges is very fast
• Because relationships are determined when data is inserted into the

database
• Relationships (edges) are persisted just like nodes
• Not computed at query time (as in relational databases)

Graph Database Example

Graph Database Example

Graph Database Features

• Transaction support: graph can only be modified within a
transaction
• No “dangling relationships” allowed
• Nodes can only be deleted if they have no edges connected to

them

• Availability via replication

• Scaling via sharding is difficult since the graph relies heavily
on the relationships between its nodes
• Fragmentation can be done using domain knowledge (i.e.

separating relationships by different geographic regions,
categories, time periods, etc. – factors don’t get traversed much)
• Traversal across shards is very expensive

Interacting with Graph
Databases

• Web services / REST APIs exposed by the database

• Language-specific libraries provided by the database vendor
or community
// Find the names of people who like NoSQL Distilled
Node nosqlDistilled = nodeIndex.get("name",

"NoSQL Distilled").getSingle();
relationships = nosqlDistilled.getRelationships(INCOMING, LIKES);
for (Relationship relationship : relationships) {
 likesNoSQLDistilled.add(relationship.getStartNode());
}

• Query languages – allow for expression of complex queries
on the graph
• Gremlin with Blueprints (JDBC-like) database connectors
• Cypher (for neo4j)

Graph Database Query
Language Example

• A “select” statement in Cypher
START beginingNode = (beginning node specification)
MATCH (relationship, pattern matches)
WHERE (filtering condition: on data in nodes and relationships)
RETURN (What to return: nodes, relationships, properties)
ORDER BY (properties to order by)
SKIP (nodes to skip from top)
LIMIT (limit results)

• Find the names and locations of Barbara’s friends
• Cypher
START barbara = node:nodeIndex(name = "Barbara")
MATCH (barbara)-[:FRIEND]->(friend_node)
RETURN friend_node.name,friend_node.location

• Gremlin
g = new Neo4jGraph(‘/path/to/graph/db’)
barbara = g.idx(T,v)[[name:’Barbara’]]
friends = barbara.out(‘friend’).map

Using Graph Databases

• Use graph databases for…
• Connected data in link-rich domain (i.e., friends, colleagues,

employees, customers, etc.)

• Routing or dispatch applications with location data (i.e., maps,
directions, distances)

• Recommendation engines (i.e., for products, dating services,
etc.)

• Don’t use graph databases for…
• Applications where many or all data entities need to be updated

at once or frequently

• Data that needs lots of partitioning

Popular Graph Databases

https://en.wikipedia.org/wiki/Graph_database#List_of_graph_databases

Supports graph, key-value, and
document-based access patterns

https://en.wikipedia.org/wiki/Graph_database

Aggregate Data Models

Aggregate Data Models
• Aggregate: a collection of related objects treated as a unit
• Particularly for data manipulation and consistency management

• Aggregate-oriented database: a database comprised of aggregate data
structures
• Supports atomic manipulation of a single aggregate at a time
• Makes it simple to scale out across clusters
• Aggregates make natural units for replication and fragmentation/sharding

• Aggregates match up nicely with in-memory data structures
• Use a key or ID to look up an aggregate record

• An aggregate-ignorant data model has no concept of how its
components can aggregate together (e.g., relational and graph DBs)
• Can efficiently support query data in multiple ways, but makes it more

challenging to scale across clusters

Aggregate Database Example:
An Initial Relational Model

Aggregate Database Example:
An Aggregate Data Model

Aggregate Database Example:
Another Aggregate Model

Aggregate-Oriented Databases

• Key-value databases
• Stores data that is opaque to the database
• The database cannot see the structure of records, just has a key to access

a record
• Application needs to deal with this

• Allows flexibility regarding what is stored (i.e., text or binary data)

• Document databases
• Stores data whose structure is visible to the database
• Imposes limitations on what can be stored
• Allows more flexible access to data (i.e., partial records) via querying

• Both key-value and document databases consist of aggregate
records accessed by ID values

Aggregate-Oriented Databases

• Wide-column databases
• Two levels of access to aggregates (and hence, two pars to the

“key” to access an aggregate’s data)
• ID: to look up aggregate record

• Column name: either a label for a value (name) or a key to a list entry
(order id)

• Columns are grouped into column families

Relationships in Aggregate
Databases

• Aggregates contain ID attributes to related aggregates
• Require multiple database accesses to traverse relationships
• One to lookup ID(s) of related aggregate(s) in main aggregate

• One to retrieve each of the related aggregates

• Many NoSQL databases provide mechanisms to make
relationships visible to the database (to make link-walking easier)

• Atomicity is limited to each aggregate, so updates to
relationships require the application to maintain consistency
(which is difficult!)

• Aggregate databases become awkward when it is necessary to
navigate around many aggregates

Comparison of Data
Management Capabilities

• Key-value databases
• Opaque data store
• Almost no capabilities requiring value introspection

• Document databases
• Transparent data store
• Some advanced capabilities (e.g., partial record queries, indexes)

• Wide-column databases
• Transparent data store and dynamic schema
• Some advanced capabilities (e.g., key spaces, query languages)

• Relational databases
• Static uniform schema
• Many advanced capabilities (e.g., integrity constraints, indexes, etc.)

Schema-less Databases
• Common to many NoSQL databases – also called emergent schemas

• Advantages
• No need to predefine data structure
• Good support for non-uniform data

• Disadvantages
• Potentially inconsistent names and data types for a single value
• Example: "quantity, Quantity, QUANTITY, qty, count, …" or "5, 5.0, five, V …"
• The database does not enforce these things because it has no knowledge of the

implicit schema
• Management of the implicit schema migrates into the application layer
• Failure to do this properly can lead to hard-to-catch bugs (e.g., a bug affecting all

customers who registered from Jan 1st 2018 until July 4th 2019)
• Need to look at code to understand what data and structure is present
• No standard location or method for implementing the logic to do this

• What do you do if multiple applications need access to the database?

Key-Value Databases

Key-Value Databases

• Key-value store is a simple hash table
• Records accessed via key
• Akin to a primary key for relational database records

• Quickest (or only) way to access a record

• Values can be of any type
• Like blob data type in relational database

• Operations:
• Get a value for a given key

• Set (or overwrite or append) a value for a given key

• Delete a key and its associated value

Key-Value Database Features

• No ACID transactions
• Though each operation is atomic (e.g., set), a series of operations

are unrelated (like autocommit)

• Weak consistency and durability
• Default configuration is aimed at high performance

• Some options for higher durability (e.g., more frequent writes to disk,
synchronous writes)

• Scale by both fragmentation and replication
• Shard by key values (using a uniform function)

• Replicas should be available in case a shard fails
• Otherwise, all reads and writes to the unavailable shard fail

Interacting with Key-Value
Databases

• Applications can only query by key, not by values in the
data

• Design of key is important
• Must be unique across the entire database

• Bucket can provide an implicit top-level namespace (e.g.,
university_, loans_, etc.)

• Expiration times can be assigned to key-value pairs
• Good for storing transient data

Interacting with Key-Value
Databases

• How and what data gets stored is managed entirely by the
application

• Single key for related data structures
• Key incorporates identification data (i.e. user_<sessionID>)
• Data can include various nested data structures (i.e. user data including

session, profile, cart info)
• All data is set and retrieved at once

• Multiple keys for related data structures
• Key incorporates name of object being stored (i.e.

user_<sessionID>_profile
• Multiple targeted fetches needed to retrieve related data
• Decreases chance of key conflicts (aggregates have their own specific

namespaces)

Key-Value Aggregate
Examples

Using Key-Value Databases

• Use key-value databases for:
• Caching

• Transient data

• Data accessed via a unique key (i.e., page id, session, user
profile, shopping cart, etc.)

• Don’t use key-value databases for:
• Relationships among data

• Multi-operation transactions

• Operations on sets of records

• Querying by data (value instead of key)

Popular Key-Value Databases

Memcached

• Working with a neighbor, draw one or more aggregates to
represent the following information:
• Alice has borrowed a book, "Through the Looking-Glass," by

Lewis Carroll (ISBN: 1949460894, copy number 2, accession
number 4837). The book is due back on December 1st, 2021.

Practice Quiz:
Aggregate Data Models

Document Databases

Document Databases

• Store of documents with keys to access them
• Similar to key-value databases except…
• Can see and dynamically manipulate the structure of the documents
• Often structured as JSON (textual) data
• Each document can have its own structure (non-uniform)

• Each document is (automatically) assigned an ID value (_id)

• Consistency and transactions apply to single documents
• If this isn't sufficient for your application, then document databases

are a poor fit

• Replication and sharding are by document

• Queries to documents can be formatted as JSON
• Able to return partial documents

Document Database Example
SQL Document Database Query

select * from order db.order.find()

select * from order
 where customerId = 12345

db.order.find({
 “customerId”:12345
})

select orderId, orderDate
 from order
 where customerId = 12345

db.order.find(
 {“customerId”:12345},
 {“orderId”:1,”orderDate”:1}
)

select *
 from order
 natural join orderItem
 natural join product p
 where p.name like ‘%Refactoring%’

db.order.find({
 “items.product.name”:
 ”/Refactoring/”
})

// in order collection
[{
 “customerId”:12345,
 “orderId”:67890,
 “orderDate:”2012-12-06”,
 “items”:[{
 “product”:{
 “id”:112233,
 “name”:”Refactoring”,
 “price”:”15.99”
 },
 “discount”:”10%”
 },
 {
 “product”:{
 “id”:223344,
 “name”:”NoSQL Distilled”,
 “price”:”24.99”
 },
 “discount”:”3.00”,
 “promo-code”:”cybermonday”
 },
],
 …
}

Using Document Databases

• Document databases can be used for…
• Content management or blogging platforms
• Web analytics stores
• E-commerce applications
• Event logging: central store for different kinds of events with various

attributes

• …but relational databases can be used for many of the same
things

• Do not use document databases for…
• Transactions across multiple documents (records)
• Ad hoc cross-document queries

Popular Document Databases

Supports graph, key-value, and
document-based access patterns

Wide-Column Store
Databases

Wide-Column Store Databases

• Structure of data records:
• Records are indexed by key

• Columns are grouped into column families (like RDBMS tables)

• Efficient support for sparse data

• Data access:
• Get, set, delete operations

• Query language (e.g., CQL: Cassandra Query Language)

• Also known as column-based or column family
• Not the same as column-oriented

Wide-Column Store Database
Example

Wide-Column Store Database
Example

CREATE COLUMNFAMILY Customer (
KEY varchar PRIMARY KEY,
name varchar,
city varchar,
web varchar);

INSERT INTO Customer (KEY,name,city,web)
VALUES ('mfowler',

'Martin Fowler',
'Boston',
'www.martinfowler.com');

SELECT * FROM Customer;

SELECT name,web FROM Customer WHERE city='Boston’

Using Wide-Column Store
Databases

• Useful for:
• Big data (e.g., web crawling)

• Sparse data

• Not useful:
• If only a few database servers are needed

• For systems requiring ACID transactions

• For flexible access patterns (e.g., joins between tables)

Popular Wide-Column Store
Databases

Google Cloud Bigtable

Amazon DynamoDB

Open Source Cloud Services

Column-Oriented
Databases

Storage of a Row-Oriented
Database

id email salary id email salary …

One row

One block

Consider: SELECT salary FROM info WHERE email = a@gmail.com

Consider a query including: sum(salary)

Storage of a Column-Oriented
Database

id salary id salary id salary …

One key-value pair

One block

id email id email id email …

One key-value pair

One block

Consider: SELECT salary FROM info WHERE email = a@gmail.com
Consider a query including: sum(salary)

Using Column-Oriented
Databases

• Useful for:
• Time series data

• OnLine Analytical Processing: OLAP (e.g., event
logging and analysis)

• Not useful for:
• OnLine Transaction Processing: OLTP (e.g., financial

transactions)

Popular Column-Oriented
Databases

Amazon Redshift

NoSQL Design Activity

NoSQL Design Activity

• Working with your project team:

• Identify a NoSQL DB that might serve a purpose for your
application. Describe how you might use it, and the pros and
cons of using it in combination with or instead of a
relational database:
• Key-value store (e.g., for caching or transient data)

• Document database (think about possible aggregates)

• Wide-column store (e.g., for big data or sparse data)

• Column-oriented database (e.g., for analytics)

• Graph database (e.g., for recommendations)

Relational vs NoSQL
Migrations

Schema Migrations
• The structure of data changes regardless of what kind of

database it resides in

• System requirements evolve and the supporting database(s)
must keep pace

• Transition phase: period of time in which the old and new
schema versions must be maintained in parallel

• For example: suppose our application originally only allowed
customers to store a shipping address and a billing address
• Now, customers can have multiple shipping and billing addresses

• Converting two one-to-one relationships to one-to-many

Schema Migration Challenges

• Minimize transition phase
• How can all data be migrated as quickly as possible?
• Does all data need to be migrated?

• Avoid downtime of production databases
• Challenging to avoid for large systems, as DDL to alter structure often

requires locking entire tables

• Ensure database remains usable to all applications during transition
phase
• Different applications will integrate the schema changes at different

times
• Don’t cause errors
• Don’t corrupt or lose data

Schema Changes in Relational
Databases

• Must keep database and applications in sync
• Schema changes applied separately to database and applications

• Schema changes need to be applied in the correct order

• Need to ensure that schema changes can be rolled back if
there is a problem

• Schema changes need to be applied to all environments in the
same fashion
• Development, test, staging, production

Database Migration
Frameworks

• Logic to execute each schema change is stored in a file which
contains a version string
• Scripts to generate initial database or take a “snapshot” of the current

structure of an existing database get the initial version (if the database
already exists)

• May contain logic to upgrade and downgrade the database to/from
its version

• Migration framework is responsible for applying changes up/down
to a certain version of the database in the right order

• Can be integrated into the project build process so it automatically
gets executed in various environments when a new version of the
application is introduced there

MiniFacebook Migrations

1. Generate migrations
• python manage.py makemigrations

2. Apply migrations
• python manage.py migrate

• Example:
• django/djangoproject/minifacebook/migrations/0001_initial.py

• django/djangoproject/minifacebook/migrations/0002_alter_status_options.py

• django/djangoproject/minifacebook/migrations/0003_poke.py

Migration Python Code

from django.db import migrations, models
import django.db.models.deletion
import uuid

class Migration(migrations.Migration):
 initial = True
 dependencies = []
 operations = [
 migrations.CreateModel(
 name='Profile',
 fields=[
 ('id', models.UUIDField(default=uuid.uuid4, editable=False,
primary_key=True, serialize=False)),
 ('first_name', models.CharField(max_length=100)),
 ('last_name', models.CharField(max_length=100)),
 ('email', models.EmailField(max_length=254)),
 ('activities', models.TextField()),
],
),
...

0001_initial.py

Migration SQL Code

> python manage.py sqlmigrate minifacebook 0001
BEGIN;
--
-- Create model Profile
--
CREATE TABLE "minifacebook_profile" ("id" uuid NOT NULL PRIMARY KEY, "first_name"
varchar(100) NOT NULL, "last_name" varchar(100) NOT NULL, "email" varchar(254) NOT NULL,
"activities" text NOT NULL);
--
-- Create model Status
--
CREATE TABLE "minifacebook_status" ("id" uuid NOT NULL PRIMARY KEY, "message" text NOT
NULL, "date_time" timestamp with time zone NOT NULL, "profile_id" uuid NOT NULL);
ALTER TABLE "minifacebook_status" ADD CONSTRAINT
"minifacebook_status_profile_id_dfb04e9b_fk_minifaceb" FOREIGN KEY ("profile_id")
REFERENCES "minifacebook_profile" ("id") DEFERRABLE INITIALLY DEFERRED;
CREATE INDEX "minifacebook_status_profile_id_dfb04e9b" ON "minifacebook_status"
("profile_id");
COMMIT;

Schema Changes in a NoSQL
Store

• Implicit schema: the database may be “schema-less,” but the application
still must manage the way data is structured

• Incremental migration: read from both schemas and gradually write
changes
• Read methodology:
• Read the data from the new / updated field(s)
• If the data is not in the new field(s), read it from the old ones

• Write methodology:
• Write data only to the new field(s)
• Old field may be removed

• Some data may never be migrated

• Changes to top-level aggregate structures are more difficult
• Example: make nested order records (inside customers) into top-level

aggregates
• Application must work with both old and new structures

Incremental Migration
Example

Relational vs NoSQL
Migrations

• If you are willing to accept a small amount of downtime (to
restart your web application), automatic migrations from a
framework like Django are a clear win

• If downtime is unacceptable, then regardless of your DBMS
your application code will need to support data in both the
old and new schemas
• With a relational database, after the migration has finished you

can remove the code supporting the old data format

• With incremental migrations in NoSQL, you may need to
support data in both schemas indefinitely
• Could get messy over the years…

Practice Quiz:
Project Check In

• Working with your project team:
• Review the Homework 12 and 13 Project Milestones

• List the items you still need to complete, and make a plan to
divide the work

Today you will learn…

• About the tradeoffs of enforcing ACID properties

• How to choose between relational DBs and NoSQL

Related Issues

Review: Distribution Models

• Single server: simplest model, everything on one node

• Sharding: storing different data on different nodes (AKA,
fragmentation)
• Auto-sharding: some databases handle the logistics of sharding so that

the application does not have to

• Replication: duplicate data on multiple nodes
• Primary-standby replication: primary node is responsible for updates,

standby node(s) support reads (AKA, master-follower)
• Peer-to-peer replication:
• All nodes do reads and writes, and communicate changes to other nodes

(AKA, multi-master)
• Pros: Eliminates any one master as a single point of failure
• Cons: maintaining consistency can be challenging (e.g., write-write

conflicts, when two users update the same data item on separate nodes)

Review: ACID

• Atomicity: either all of the transaction completes, or
none of it completes
• If any part of the transaction fails, all effects of it must be

removed from the database

• Consistency: database ends the transaction in a consistent
state (provided it started that way)

• Isolation: concurrently executing transactions must be
unaware of each other (as if they ran serially)
• It should look to one as if the other has not started or has

already completed

• Durability: a transaction’s effects must persist in the
database after it completes

Two Forms of Consistency

• Update consistency: ensuring serial database changes

• Read consistency: ensuring users read the same value for data
at a given time

• Note: These are related to ACID's "consistency," but slightly
different

Update Consistency

• Ensuring serial database changes

• Pessimistic approach: prevents conflicts from occurring (i.e.
locking)

• Optimistic approach: detects conflicts and sorts them out (i.e.
validation)
• Conditional update: just before update, check to see if the value

has changed since last read

• Write-write conflict resolution: automatically or manually merge
the updates

• Trade-off between safety and “liveness” (responsiveness)

Read Consistency

• Ensuring users read the same value at a given time

• Logical consistency: consistent between reads on a single node

• Replication consistency: consistency between replicas
• Eventual consistency, not immediate

• Challenge: if a user makes a change, they expect to see the change
(AKA, read-your-writes consistency)

• Potential solution: Session affinity: assign a user's session to a
given database node (AKA, sticky sessions)

CAP Theorem

• Pick two of these three:
• Consistency: ensure update consistency (serial database

changes), and read consistency (data becomes visible to all
readers simultaneously)

• Availability: if you can talk to a node, you can read and write
• Partition tolerance: cluster can continue operating even if a

network fault divides it into multiple isolated partitions

• For distributed systems it's "pick two," because partitions can
happen to any distributed system
• If you have just one server, it cannot be partitioned, so you can

get both consistency and availability

CAP Explained

• To continue operating despite a network partition (partition
tolerance), we need to trade off consistency of data vs.
availability
• If we want to support writes (availability) while the partitions cannot

communicate, their data will become inconsistent

• If we want to keep the data in both partitions consistent, we cannot
continue servicing requests

Diluting ACID:
Relaxed Consistency

• If a network partition occurs, suppose we choose availability
over consistency. For example:
• A user's shopping cart becomes unavailable, so a new cart is

created. At checkout, user is prompted to merge carts.

• Allow two users to book a flight/hotel/etc. at the same time. It
might be okay if there is an overbooking if extra seats/rooms/etc.
can be made available.

• Counterpoint: supporting relaxed consistency requires
complex application logic. Fast recovery from partitions (less
than 10 seconds) can ensure consistency, while having high
availability.
• Further reading: The Limits of the CAP Theorem

https://www.cockroachlabs.com/blog/limits-of-the-cap-theorem/

Diluting ACID:
Relaxed Durability

• Replication durability: what happens if primary node receives
an update, but it cannot communicate with a standby node?
• Not necessary to communicate with all standbys to preserve

strong durability; just a large enough quorum

• But what if you are willing to sacrifice durability?
• You can achieve higher performance by writing to disk less

frequently
• Perhaps a good choice for:
• Telemetry (e.g., performance statistics): you wouldn't want your

webpages to hang if the telemetry server went down anyway
• Session data: updated very frequently, and a critical determiner of site

responsiveness. Only a little annoying to customers if they lose a few
minutes of recent browsing history, etc.

Polyglot Persistence

Polyglot Persistence

• Pick the best tool for the job: different databases are designed
for different types of data

• Example:
• Many e-commerce sites run entirely on a relational database

• Alternatively:
• Keep order processing data in the RDBMS

• Session and shopping cart data could be separated into a key-value
store

• More transient data which can be copied to RDBMS once an order is placed

• Customer social data could reside in a graph database
• Designed specifically to optimize traversing relationships between data,

perhaps for recommendations

Polyglot Persistence Example

Web Service Wrappers for
Data Stores

• Advantages over direct access to data store:
• Easier and cleaner to integrate the data store with multiple

applications

• Allows database structure to change without needing to update
applications that use it
• Potentially even change the database itself

• Drawbacks:
• Overhead of another layer

• Sometimes modifying a web service still requires changing
applications that use it (reduces this likelihood)

Web Service Wrapper
Example

Which DBMS should
you choose?

For a given purpose, do you use relational or NoSQL?

When You Should Use
NoSQL

• When you need to perform complex graph queries, use a
graph database

• When you have weak consistency or durability needs
• For caching, use a key-value store

• For telemetry, use:
• InfluxDB for time series data (column oriented)

• Elasticsearch for log data (supports fast text searches)

When You Might Use NoSQL

• Potentially: when your application only needs to support limited
access patterns.
• This might be the case if your data is mainly collected or displayed in

terms of aggregates

• Debatable: if your data includes complex, nested, or hierarchical
structures; or if your data is non-uniform
• You could simply de-normalize or store JSON in a relational DB. Can

even get better performance this way.

• Debatable: programmer productivity
• Easier to prototype with an implicit schema, but much harder to

maintain. And again, you could simply use JSON in a relational DB.

• Debatable: scalability
• Distributed relational databases (e.g., CockroachDB, Google Spanner,

Google F1), etc. show you can get scalability and consistency

https://medium.com/nerd-for-tech/the-dark-side-of-the-mongodb-f66f198a566b
https://medium.com/nerd-for-tech/the-dark-side-of-the-mongodb-f66f198a566b

When Not to Use NoSQL
• When you need ACID (e.g., transferring money between accounts)

• When many different applications with different developers/owners
will access the data (i.e., integration databases)
• Relational databases support strong security measures at the database

level to protect data
• An explicit schema serves as documentation
• However, today web-services are considered a better practice

• If you don't have a good reason to use NoSQL
• Relational databases are well-known, mature, and have lots of tools

(e.g., the Django admin interface)
• ORM can cut down on impedance mismatch
• Much easier to switch from a well-designed relational schema to an

implicit NoSQL schema – potentially impossible to do the reverse

My Recommendations

• Relational database for primary data storage

• Key-value stores for caching

• Graph databases for data exploration, recommendations, etc.

• Column-oriented databases for telemetry

• Wide-column store databases for big data

• Generally, avoid document databases
• Much easier to switch from an explicit schema to an implicit schema

than vice versa
• Perhaps tempting to rapid-prototype with an implicit schema, but all-

too-often, prototypes are deployed to production…

Further Reading

• https://www.cockroachlabs.com/docs/stable/cockr
oachdb-in-comparison.html

• https://www.arangodb.com/2018/02/nosql-
performance-benchmark-2018-mongodb-postgresql-
orientdb-neo4j-arangodb/

• Flowchart (linked from schedule)

https://www.cockroachlabs.com/docs/stable/cockroachdb-in-comparison.html
https://www.cockroachlabs.com/docs/stable/cockroachdb-in-comparison.html
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/
https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/

