
Crash Recovery
CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner

Gordon College

Practice Quiz: Equivalence

• Order the following from most to least "strict":
result equivalence, conflict equivalence, view equivalence

• Draw a schedule that shows:
• Two transactions which are not serial, and which are not

conflict serializable

• Two transactions which are not serial, but which are conflict
serializable

Today you will learn…

• How do databases recover from crashes?
• Transaction rollbacks (common)

• System failures (more rare)

Review

Ensuring Data Integrity

• Issues related to preserving data integrity
• Concurrency control
• Crash control

• Transactions are a key concept at the heart of these
matters

• Database is in a consistent state if there are no
contradictions between the data within it
• Temporary inconsistencies occur by necessity, but must not

be allowed to persist
• Example: transfer of funds between bank accounts

Transactions are Atomic and
Preserve Consistency

• A transaction is an atomic operation (unit of work)
involving a series of processing steps including:
• One or more reads and/or writes

• Data computations can happen during a transaction,
but the database is mostly concerned with reads and
writes

• If the database is in a consistent state at the start of
the transaction, it will be in a consistent state at the
end of the transaction

ACID

• Atomicity: either all of the transaction completes, or
none of it completes
• If any part of the transaction fails, all effects of it must be

removed from the database

• Consistency: database ends the transaction in a consistent
state (provided it started that way)

• Isolation: concurrently executing transactions must be
unaware of each other (as if they ran serially)
• It should look to one as if the other has not started or has

already completed

• Durability: a transaction’s effects must persist in the
database after it completes

Transaction States

• Active: from the time a transaction
starts until it fails or reach its
last statement

• Partially committed:
last statement executed, but
changes to database are not
yet permanent (SQL commit)

• Committed: changes to database have
been made permanent

• Failed: logic error or user abort has precluded completion, and
transaction’s changes must be undone (SQL rollback)

• Aborted: all effects of the transaction have been removed

Crash Recovery

Causes of Data Corruption

• Logical errors related to incoming data
• Aborted operations (both programmatic and interactive)

• Transaction failures (i.e. from rollback, deadlock, etc.)

• System crashes
• Power failure
• Hardware failure (i.e. failed CPU)
• Software failure (i.e. operating system crash)
• Network communication failure
• Human error
• Security breach or cyber-attack

• Disk failures that destroy the medium storing the data

• External catastrophes (i.e., fire, flood, etc.)

Storage Types and Data Loss

• Volatile storage: main memory
• Subject to data loss at any time from many factors (i.e.

power, hardware, software failure, etc.)

• Non-volatile storage: disk
• Not as prone to data corruption
• Still susceptible to power failures during writes, disk

failures, and external catastrophes

• “Stable” storage:
• Write-once media: CDs, DVDs, Blu-ray, etc.
• Susceptible to damage and degradation

• RAID: susceptible to individual disk failures

https://www.canada.ca/en/conservation-institute/services/conservation-preservation-publications/canadian-conservation-institute-notes/longevity-recordable-cds-dvds.html

Mitigating Storage Failures

• Use a redundant RAID configuration (e.g., RAID 10)
• Monitor the integrity of the RAID by checking S.M.A.R.T.

status and performing disk scrubbing

• Promptly replace failed/failing disks

• Perform regular backups
• Protect data against non-volatile storage failure and inadvertent

data erasure (i.e. human error, ransomware)
• Rare, but will occur eventually

• Backups are essential but not enough
• Need fast restoration of changes since the last backup

• Test your backups!

Crash Recovery Measures

• Restore the system to a consistent state after an aborted
operation or crash

• Ensure the durability property of transactions – that commits
“stick”
• Each transaction assigned a unique identifier (i.e. serial number)

• Keep some record of incoming transactions

• Deal with in-process transactions when the system failed

Transaction Processing Log

• Track details of each transaction
• Transaction start message

• Details of changes made to the database

• Transaction end message

• Used to recover from a crash

• Can be used for database replication

Transaction End Messages

• Commit entry: indicates successful completion of a
transaction
• This transaction's changes to the database should persist

• Abort entry: indicates the transaction failed
• None of this transaction's changes should persist

• If the system crashes while a transaction is in progress, the
end message will be missing. After crash recovery completes:
• No changes from that transaction should persist

• If possible, the transaction can be restarted

Protect the Log!
• The transaction processing log needs to be protected against

corruption
• Write it to stable storage
• Keep multiple copies of the log in different locations

• Ensure the log data is written before the actual changes are written
to the database
• System typically buffers log entries until a block of them can be written
• Actual database updates written after the log buffer is flushed

• Sometimes it might be necessary to write out data block before the
logging block is full
• A forced write of a partial log buffer

• Ensure that a crash that occurs while the log block is being written
does not corrupt previous log entries

Crash Recovery Schemes

• Incremental Log with Deferred Updates
• No changes are made to the database until after the transaction

commits and the commit entry is written to the log

• Incremental Log with Immediate Updates
• Changes are made to the database during the transaction, but

only after a log entry is written that includes the initial values of
the things changed (so they can be recovered if necessary)

• Shadow Paging
• Two copies of the relevant database data are kept during the

transaction – both original and modified values. Once the
transaction commits, the modified values permanently replace the
original ones. (No log required.)

Storage Types

• Data only persists after it
is written to nonvolatile
storage

• For performance, data is
buffered in memory

• For durability, the
memory buffers for
database data files and log
files must be flushed at
certain times in a
transaction's lifecycle

Incremental Log with
Deferred Updates

Incremental Log with
Deferred Updates

• Example: A transaction to transfer $50 from checking to savings (with
initial balances of $1000 and $2000, respectively.

• Once transaction partially commits (e.g. commit log entry is written),
actual updates to the database occur
• If the transaction fails or aborts, no changes have been made to the database

SQL Log Entries

update checking_accounts
 set balance = balance – 50
 where account_no = 127;

update savings_accounts
 set balance = balance + 50
 where account_no = 253;

T1234 starts
T1234 writes 950 to balance of
 checking_accounts record 127
T1234 writes 2050 to balance of
 savings_accounts record 253
T1234 commits

Deferred Update Recovery
• If the system crashes during a transaction:
• If the crash occurs before the commit log entry is written:
• Ignore (or restart) the transaction when the system is restored

• If the crash occurs after the commit log entry is written:
• (Re)write values from the log to the database (no harm in writing the same

values to the database a second time)

• This redo log approach has the following recovery algorithm:
• for each transaction with a commit record in the log
• Write each new value for the transaction in the log to the database

• Checkpoint: periodic automated flush of buffers to disk
• Causes committed transactions to be reflected in non-volatile storage
• DBMS writes a checkpoint to the log
• Only transactions after the checkpoint need to be applied after a crash

Deferred Update Tradeoffs

• Changes aren't reflected in the database until they are
committed

• This incurs memory overhead
• A transaction needs to keep a copy of the data it modifies, since

it hasn't yet been written to disk

• Cannot support transactions that don't fit in memory

• The major benefit is simpler recovery, since uncommitted
transactions can be ignored

Incremental Log with
Immediate Updates

Incremental Log with
Immediate Updates

• Since database updates happen during the course of a transaction,
log entries (written before the updates) must contain both old and
new values

• If the transaction fails or aborts, all database updates must be
undone by writing the original values back to the database

SQL Log Entries

update checking_accounts
 set balance = balance – 50
 where account_no = 127;

update savings_accounts
 set balance = balance + 50
 where account_no = :253;

T1234 starts
T1234 writes 950 to balance of
 checking_accounts record 127
 (old value was 1000)
T1234 writes 2050 to balance of
 savings_accounts record 253
 (old value was 2000)
T1234 commits

Immediate Update Recovery

• Redo and undo log approach to crash recovery
• for each transaction with a start record in the log
• if its commit record is also in the log

• redo: write each new value for the transaction in the log to the
database

• else

• undo: rewrite each old value for the transaction in the log to the
database

• Order is critical
• Undo operations must happen first (from newest to oldest)
• Redo operations can happen afterward (from oldest to newest)

• Use checkpoints to minimize undo/redo work

Immediate Update Tradeoffs

• Longer log entries: both old and new values stored

• Every database write requires the corresponding log entry to
be written to disk/stable storage (not just on commit)

• Failed transactions must be “cleaned up”
• Crash recovery requires processing every transaction, not just

the ones that committed

• The major benefit is support for large transactions that don't
fit in memory

Shadow Paging

Shadow Paging

• Maintain two copies of the active portion of the database
• Current version: reflects all changes since start of current

transaction

• Shadow version: state of database before current transaction
began

• If transaction fails or aborts, current version is discarded

• If transaction commits, current version replaces shadow
version

Shadow Paging Recovery

• Crash recovery is automatic, since changes are only made to
the current version, simply revert to the shadow version

• Major benefit: in a single-user environment, a log isn't
needed!

Shadow Paging Drawbacks

• Hard to maintain with lots of concurrent transactions

• Larger storage overhead than log-based approaches
• Entire pages are duplicated (e.g., 8KB per page)

• Data fragmentation occurs quickly
• Data is moved to different places on disk when it is changed

• Old shadow copies must be cleaned up after a commit
• Garbage collection

Summary

• Multiple transactions can conflict with each other
• Conflicts be efficiently detected using precedence graphs

• Non-conflicting transactions are "Conflict Serializable"

• When there is a conflict, one of the transactions must be
rolled back
• Crash recovery must be aware of these ordinary transaction

failures

• Different techniques can be used to implement crash
recovery

Further Reading

• PostgreSQL Manual:
Reliability and the Write-Ahead Log (WAL)
• https://www.postgresql.org/docs/16/wal.html

• WAL is an "immediate update" approach

https://www.postgresql.org/docs/16/wal.html

