Crash Recovery

CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner
Gordon College

Practice Quiz: Equivalence

* QOrder the following from most to least "strict":
result equivalence, conflict equivalence, view equivalence

 Draw a schedule that shows:

* Two transactions which are not serial, and which are not
conflict serializable

« Two transactions which are not serial, but which are conflict
serializable

Today you will learn...

 How do databases recover from crashes?
* Transaction rollbacks (common)
* System failures (more rare)

Ensuring Data Integrity

» Issues related to preserving data integrity
* Concurrency control
* Crash control

» Transactions are a key concept at the heart of these
matters

 Database is in a consistent state if there are no
contradictions between the data within it

- Temporary inconsistencies occur by necessity, but must not
be allowed to persist

+ Example: transfer of funds between bank accounts

Transactions are Atomic and
Preserve Consistency

* A transaction is an atomic operation (unit of work)
involving a series of processing steps including:

* One or more reads and/or writes

» Data computations can happen during a transaction,

but the database is mostly concerned with reads and
writes

If the database 1s 1n a consistent state at the start of

the transaction, 1t will be 1n a consistent state at the
end of the transaction

ACID

Atomicity: either all of the transaction completes, or
none of it completes

 If any part of the transaction fails, all effects of it must be
removed from the database

Consistency: database ends the transaction in a consistent
state (provided it started that way)

Isolation: concurrently executing transactions must be
unaware of each other (as if they ran serially)

* It should look to one as if the other has not started or has
already completed

Durability: a transaction’s effects must persist in the
database after it completes

Transaction States

Active: frpm the time a transaction
starts until 1t fails or reach its
last statement

Partially committed:
last statement executed, but

changes to database are not
yet permanent (SQL commit)

Commuitted: changes to database have
been made permanent

Failed: logic error or user abort has precluded completion, and
transaction’s changes must be undone (SQL rollback)

Aborted: all effects of the transaction have been removed

Crash Recovery

Causes of Data Corruption

Logical errors related to incoming data
- Aborted operations (both programmatic and interactive)

Transaction failures (1.e. from rollback, deadlock, etc.)

System crashes
+ Power failure
Hardware failure (i.e. failed CPU)
Software failure (i.e. operating system crash)
Network communication failure
Human error
Security breach or cyber-attack

Disk failures that destroy the medium storing the data

External catastrophes (i.e., fire, flood, etc.)

Storage Types and Data Loss

* Volatile storage: main memory

* Subject to data loss at any time from many factors (i.e.
power, hardware, software failure, etc.)

* Non-volatile storage: disk
* Not as prone to data corruption

- Still susceptible to power failures during writes, disk
failures, and external catastrophes

« “Stable” storage:

» Write-once media: CDs, DVDs, Blu-ray, etc.
* Susceptible to damage and degradation
» RAID: susceptible to individual disk failures

https://www.canada.ca/en/conservation-institute/services/conservation-preservation-publications/canadian-conservation-institute-notes/longevity-recordable-cds-dvds.html

Mitigating Storage Failures

e Use a redundant RAID configuration (e.g., RAID 10)

* Monitor the integrity of the RAID by checking SM.A.R.T.
status and performing disk scrubbing

* Promptly replace failed/failing disks

* Perform regular backups

 Protect data against non-volatile storage failure and inadvertent
data erasure (i.e. human error, ransomware)

« Rare, but will occur eventually
+ Backups are essential but not enough

* Need fast restoration of changes since the last backup
+ Test your backups!

Crash Recovery Measures

* Restore the system to a consistent state after an aborted
operation or crash

* Ensure the durability property of transactions — that commits
“stick”

- Each transaction assigned a unique identifier (i.e. serial number)
+ Keep some record of incoming transactions

* Deal with in-process transactions when the system failed

Transaction Processing LLog

Track details of each transaction
 Transaction start message
* Details of changes made to the database

 Transaction end message
Used to recover from a crash

Can be used for database replication

Transaction End Messages

 Commit entry: indicates successful completion of a
transaction

» This transaction's changes to the database should persist

* Abort entry: indicates the transaction failed
* None of this transaction's changes should persist

* If the system crashes while a transaction 1s in progress, the
end message will be missing. After crash recovery completes:

* No changes from that transaction should persist
- If possible, the transaction can be restarted

Protect the Log!

* The transaction processing log needs to be protected against
corruption

* Write it to stable storage
+ Keep multiple copies of the log in different locations

* Ensure the log data is written before the actual changes are written
to the database

+ System typically buffers log entries until a block of them can be written
« Actual database updates written after the log buffer is flushed

* Sometimes it might be necessary to write out data block before the
logging block is full

A forced write of a partial log buffer

* Ensure that a crash that occurs while the log block is being written
does not corrupt previous log entries

Crash Recovery Schemes

* Incremental Log with Deferred Updates

No changes are made to the database until after the transaction
commits and the commit entry 1s written to the log

* Incremental Log with Immediate Updates

Changes are made to the database during the transaction, but
only after a log entry 1s written that includes the initial values of
the things changed (so they can be recovered if necessary)

* Shadow Paging

Two copies of the relevant database data are kept during the
transaction — both original and modified values. Once the
transaction commits, the modified values permanently replace the
original ones. (No log required.)

Storage Types

Data only persists after it
1s written to nonvolatile
storage

For performance, data is
buffered in memory

For durability, the
memory buffers for
database data files and log

files must be flushed at
certain times in a

transaction's lifecycle

Session memory space

Database buffer memory space

Database data files

Incremental Log with
Deferred Updates

Incremental Log with
Deferred Updates

« Example: A transaction to transfer $50 from checking to savings (with
initial balances of $1000 and $2000, respectively.

update checking accounts T1234 starts
set balance = balance — 50 T1234 writes 950 to balance of
where account_no = 127; checking accounts record 127
T1234 writes 2050 to balance of
update savings_accounts savings_accounts record 253
set balance = balance + 50 T1234 commits
where account_no = 253;

* Once transaction partially commits (e.g. commit log entry is written),
actual updates to the database occur

If the transaction fails or aborts, no changes have been made to the database

Deferred Update Recovery

» If the system crashes during a transaction:
If the crash occurs before the commit log entry is written:
 Ignore (or restart) the transaction when the system is restored
If the crash occurs after the commit log entry is written:

* (Re)write values from the log to the database (no harm in writing the same
values to the database a second time)

* This redo log approach has the following recovery algorithm:

for each transaction with a commit record in the log
« Write each new value for the transaction in the log to the database

* Checkpoint: periodic automated flush of buffers to disk
Causes committed transactions to be reflected in non-volatile storage

DBMS writes a checkpoint to the log
Only transactions after the checkpoint need to be applied after a crash

Deferred Update Tradeofts

* Changes aren't reflected in the database until they are
committed

This incurs memory overhead

* A transaction needs to keep a copy of the data it modifies, since
it hasn't yet been written to disk

» Cannot support transactions that don't fit in memory

The major benefit 1s simpler recovery, since uncommitted
transactions can be ignored

Incremental Log with
Immediate Updates

Incremental Log with
Immediate Updates

* Since database updates happen during the course of a transaction,
log entries (written before the updates) must contain both old and
new values

update checking accounts T1234 starts
set balance = balance — 50 T1234 writes 950 to balance of
where account_no = 127; checking accounts record 127

(old value was 1000)

update savings_accounts T1234 writes 2050 to balance of
set balance = balance + 50 savings_accounts record 253
where account_no = :253; (old value was 2000)

T1234 commits

« If the transaction fails or aborts, all database updates must be
undone by writing the original values back to the database

Immediate Update Recovery

* Redo and undo log approach to crash recovery

- for each transaction with a start record in the log
* if its commit record is also in the log

* redo: write each new value for the transaction in the log to the
database

* else

» undo: rewrite each old value for the transaction in the log to the
database

Order 1s critical

» Undo operations must happen first (from newest to oldest)
* Redo operations can happen afterward (from oldest to newest)

Use checkpoints to minimize undo/redo work

Immediate Update Tradeofts

Longer log entries: both old and new values stored

Every database write requires the corresponding log entry to
be written to disk/stable storage (not just on commit)

Failed transactions must be “cleaned up”

* Crash recovery requires processing every transaction, not just
the ones that committed

The major benefit 1s support for large transactions that don't
fit in memory

Shadow Paging

Shadow Paging

Maintain two copies of the active portion of the database

* Current version: reflects all changes since start of current
transaction

» Shadow version: state of database before current transaction
began

If transaction fails or aborts, current version 1s discarded

If transaction commits, current version replaces shadow
version

Shadow Paging Recovery

* (Crash recovery 1s automatic, since changes are only made to
the current version, simply revert to the shadow version

* Major benefit: in a single-user environment, a log 1sn't
needed!

Shadow Paging Drawbacks

Hard to maintain with lots of concurrent transactions

Larger storage overhead than log-based approaches
- Entire pages are duplicated (e.g., 8KB per page)

Data fragmentation occurs quickly

 Data 1s moved to different places on disk when it 1s changed

Old shadow copies must be cleaned up after a commit
« Garbage collection

Summary

* Multiple transactions can conflict with each other
+ Conflicts be efficiently detected using precedence graphs
* Non-conflicting transactions are "Conflict Serializable"

 When there 1s a conflict, one of the transactions must be
rolled back

* Crash recovery must be aware of these ordinary transaction
failures

* Different techniques can be used to implement crash
recovery

Further Reading

* PostgreSQL Manual:
Reliability and the Write-Ahead Log (WAL)

* https://www.postgresqgl.org/docs/16/wal.html
* WAL i1s an "immediate update" approach

https://www.postgresql.org/docs/16/wal.html

