
Transactions
CSCI 220: Database Management and Systems Design

Slides adapted from
Simon Miner

Gordon College

Practice Quiz: Query
Processing and Optimization

• With a neighbor:
• Use the heuristics we

described in lecture to
develop an alternate
execution plan for the
following query

• Explain why your
plan could be faster

bname bcity assets

branch

acct_no ssn

checking

ssn cname address

customer

bname balance

acct_no ssn

loan

bname balance

πcname, balance (σbalance > 1000 (Customer ⋈ Checking))

Today you will learn…

• How do databases support multiple users?
• Today: underlying concepts

• Future: implementation

Overview

Ensuring Data Integrity

• Issues related to preserving data integrity
• Concurrency control
• Crash control

• Transactions are a key concept at the heart of these
matters

• Database is in a consistent state if there are no
contradictions between the data within it
• Temporary inconsistencies occur by necessity, but must not

be allowed to persist
• Example: transfer of funds between bank accounts

Transactions

Transactions are Atomic and
Preserve Consistency

• A transaction is an atomic operation (unit of work)
involving a series of processing steps including:
• One or more reads and/or writes

• Data computations can happen during a transaction,
but the database is mostly concerned with reads and
writes

• If the database is in a consistent state at the start of
the transaction, it will be in a consistent state at the
end of the transaction

ACID

• Atomicity: either all of the transaction completes, or
none of it completes
• If any part of the transaction fails, all effects of it must be

removed from the database

• Consistency: database ends the transaction in a consistent
state (provided it started that way)

• Isolation: concurrently executing transactions must be
unaware of each other (as if they ran serially)
• It should look to one as if the other has not started or has

already completed

• Durability: a transaction’s effects must persist in the
database after it completes

Explicit Transactions

BEGIN TRANSACTION

% your SQL code (SELECTs, UPDATEs, etc.)

COMMIT % write results to the database
% or
ROLLBACK % no changes to the database

Implicit Transactions

• Alternatively:
• Autocommit: each SQL statement in the session is treated as an

individual transaction and committed upon completion
• The default in Django

• Connection-based transactions:
• Start a transaction when the connection is opened

• Commit the transaction when the connection is closed

• Explicitly committing or rolling back starts a new transaction

• Unexpected disconnection (e.g., a network error) results in a rollback

Transaction States

• Active: from the time a transaction
starts until it fails or reach its
last statement

• Partially committed:
last statement executed, but
changes to database are not
yet permanent (SQL commit)

• Committed: changes to database have
been made permanent

• Failed: logic error or user abort has precluded completion, and
transaction’s changes must be undone (SQL rollback)

• Aborted: all effects of the transaction have been removed

Schedules
• Transaction consists of a set of read and write operations
• Other computations as well, but reads and writes are critical, since they

allow one transaction to interact with another

• For two or more concurrent transactions, the relative sequence of
their read and write operations constitutes a schedule

• Example: simultaneous $50 deposit to and $100 withdrawal from a
checking account
• In SQL, these two transactions might look like this
• update checking_account

set balance = balance + 50
where account_no = :acct

• update checking_account
set balance = balance – 100
where account_no = :acct

• Each update statement actually consists of a read and a write operation

Possible Schedules (1/2)

Schedule Deposit (T1) Withdrawal (T2) Final Balance

S1 read(1000)
write(1050)

read(1050)
write(950) 950

S2 read(1000)

write(1050)
read(1000)

write(900) 900

S3 read(1000)

write(1050)

read(1000)
write(900)

1050

Possible Schedules (2/2)

Schedule Deposit (T1) Withdrawal (T2) Final Balance

S4

read(900)
write(950)

read(1000)
write(900)

950

S5
read(1000)

write(1050)

read(1000)

write(900)
1050

S6
read(1000)
write(1050)

read(1000)

write(900) 900

We Want Serial or Serializable
Schedules!

• The schedules which yield the correct result are both serial
• One transaction is executed in its entirety before the other starts

• Serial schedules always lead to consistent results
• Non-serial schedules can sometimes also yield consistent results, but

determining this is not always algorithmically feasible

• To preserve data integrity, ensure that a schedule of
concurrent operations is serializable – equivalent to some
serial schedule

Result Equivalence
• Two schedules are considered result equivalent if

operations in one schedule can be rearranged into
another schedule, without altering the resulting
computation

• Example:
• S1 can be converted to S2

• Swap order of write(A) and
read(B) operations

• Note that the relative order of
operations within a given
transaction cannot be
reordered

Schedule T1 T2

S1 read A

write A
read B

write B

S2 read A
write A

read B
write B

Conflicting Operations
between Transactions

• Two operations in two different transactions conflict if
• They access the same data item (same column value in a single record)
• Not same column in different records
• Not different columns in same record

• At least one of the operations is a
write

• Changing the relative order of two
conflicting operations can result in
different final outcomes

• Examples:
• Schedules 1, 2, and 3 have conflicting

operations – reordering operations
would lead to different outcomes

• Schedules 4 and 5 do not have
operations in conflict – no writes

Schedule T1 T2

S1 write A
read A

S2 read A
write A

S3 write A
write A

S4 read A
read A

S5
read A

read A

Conflict Equivalence

• Two schedules S1 and S2 on the
same set of transactions are
conflict equivalent if one can be
transformed into the other by a
series of interchanges of
non-conflicting operations

• Examples
• S1 and S2 are conflict equivalent
• Access different data items

• S3 and S4 are not conflict equivalent

• A schedule is conflict serializable if
there is a serial schedule to which it
is equivalent

Schedule T1 T2

S1 read A

write A
read B

write B

S2 read A
write A

read B
write B

S3 read A

write A
read A

write B

S4 read A
write A

read A
write B

View Equivalence
• Two schedules S1 and S2 on the same set of transactions are view equivalent

if
• Some transaction in both schedules reads the initial value of the same data

item
• If in S1 some transaction reads a data item that was written by another

transaction, the same holds for the two transactions in S2

• If a transaction does the last write to some data item in S1, it also does the
last write to the same data item in S2

• This is less strict than conflict equivalence
• Requires that two schedules have the same outcome, but don’t necessarily

get there the same way (conflict equivalent)
• Conflict equivalence implies view equivalence, but not vice versa

• A schedule is view serializable if it is view equivalent to some serial
schedule

View Equivalence

Schedule T1 T2 T3

S1 read A

write A

write A
write A

S2 read A

write A
write A

write A

• View equivalent schedules which are not conflict equivalent:
• In both S1 and S2:
• T1 reads A before any other transaction has modified it

• T1 performs the last write on A

Result Equivalence Doesn't Imply
Conflict/View Equivalence

• Two conflict/view equivalent schedules will always produce the
same final results, and so are result equivalent
• But result equivalent schedules aren't necessarily conflict/view

equivalent

• Example: from account deposit and withdrawal schedules
• S1 and S2 produce same result, but are not conflict/view equivalent

Schedule Deposit (T1) Withdrawal (T2) Final Balance

S1 read(1000)
write (1050)

read(1050)
write(950) 950

S4

read(900)
write(950)

read(1000)
write(900)

950

Equivalence Summary

• Conflict Equivalence implies View Equivalence

• View Equivalence implies Result Equivalence

• Conflict Equivalence implies Result Equivalence

• Remember that "implication" is not commutative:
• Just because a implies b, doesn't mean b implies a.

• For example:
• Cat implies Animal

• So if I know "Cookie" is a cat, I know "Cookie" is an animal

• But just because "Fido" is an animal, "Fido" isn't necessarily a cat

Conflict/View Serializable

• A schedule is Conflict Serializable if it is Conflict
Equivalent to a serial schedule

• A schedule is View Serializable if it is View Equivalent to a
serial schedule

Testing for Serializability
Ensures Consistency

• To ensure correctness of concurrent operations,
ensure that the schedule followed is serializable

• Want to test a schedule for serializability
• Can be very expensive to test for view serializability

• More feasible to test for conflict serializability

Precedence Graph
• Construct a precedence graph of a schedule to test it for conflict

serializability
• Each transaction is a node on the precedence graph
• There is a directed edge from Transactiona to Transactionb if there are

conflicting operations between them – that is, at least one of the following
occurs
• Ta reads an item before Tb writes it
• Ta writes an item before Tb reads it
• Ta writes an item before Tb writes it

• If the resulting graph contains a cycle, the schedule is not conflict
serializable

• If there are no cycles, then any topological sorting of the precedence
graph will give an equivalent serial schedule

Topological Sorting

https://en.wikipedia.org/wiki/Topological_sorting

https://en.wikipedia.org/wiki/Topological_sorting

Serial

Serial

Not Conflict Serializable

Conflict Serializable

Precedence Graph Example 1

• Consider this schedule:

• T1 must read before T2 writes

• T2 must read before T1 writes

• Yields a cyclical
precedence graph
• Schedule is not serializable

Deposit (T1) Withdrawal (T2) Final Balance

read savings(1000)

write savings(1050)
read savings(1000)

write savings(900) savings(900)

Precedence Graph Example 2

• Consider a transfer of $50 from a savings account (with a $2000
starting balance) to a checking account that occurs at the same time
as a $100 checking account withdrawal via the following schedule

• Note the following conflicting operations in this schedule:
• T2 must read checking before T1 writes to checking
• T1 must read checking after T2 writes to checking

Transfer (T1) Withdrawal (T2) Final Balances

read savings (2000)

write savings (1950)

read checking (900)
write checking (950)

read checking (1000)

write checking (900)
1950 (savings)

950 (checking)

Precedence Graph Example 2
(Continued)

• Yields this precedence graph
• Acyclic – indicates a

serializable schedule

• T2 can be done before T1

• Leads to the following conflict equivalent serial schedule

Transfer (T1) Withdrawal (T2) Final Balances

read savings (2000)
write savings (1950)
read checking (900)
write checking (950)

read checking (1000)
write checking (900)

1950 (savings)

950 (checking)

Transaction Recoverability
• Schedules must not only serializable, but recoverable
• Unrecoverable schedules can lead to inconsistencies
• A transaction T2 must not commit until any transaction T1 which

produces data used by T2 commits
• If T1 fails, then T2 must also fail

• Avoid cascading rollback – possibility of chain of failed transactions
• T2 reads data from T1, T3 reads data from T2 T4 reads data from T3

• If T1 fails – T2, T3, and T4 must also fail

• Producing only cascadeless schedules is desirable
• No transaction T2 is allowed to read a value written by another

transaction T1 until T1 has fully committed
• T2 must wait until T1 commits or fails (in which the previous value of the

uncommitted item is used)

Summary

• Multiple transactions can conflict with each other
• Conflicts be efficiently detected using precedence graphs

• Non-conflicting transactions are "Conflict Serializable"

• When there is a conflict, one of the transactions must be
rolled back
• Crash recovery must be aware of these ordinary transaction

failures

• Next: different techniques can be used to implement crash
recovery

