Query Processing and Optimization

CSCI 220: Database Management and Systems Design

Slides adapted from Simon Miner Gordon College

Practice Quiz: Indexing

- With a neighbor, discuss the benefits and drawbacks of:
- Hashed indexes
- Ordered indexes (e.g., B+ Tree)
- Clustering indexes

Today you will learn...

- How databases execute queries efficiently
- Why relational algebra is useful!

Library Database Schema

book

call_number	copy_number	accession_number	title

book_author

call_number	author

checked_out

call_number	copy_number	borrower_id	date_due

borrower

borrower_id	name

Example Query

- Find the titles of all books written by "Bruce Schneier"
- SELECT title FROM book NATURAL JOIN book_author WHERE author = "Bruce Schneier"
- Many possible execution plans. For example:
A. $\pi_{\text {title }}\left(\boldsymbol{\sigma}_{\text {author }=\text { 'Bruce Schneier' }}(\right.$ Book \bowtie BookAuthor $\left.)\right)$
B. $\pi_{\text {title }}\left(\right.$ Book $\bowtie\left(\boldsymbol{\sigma}_{\text {author }}=\right.$ 'Bruce Schneier’ ${ }^{\prime}$ BookAuthor $\left.)\right)$

Evaluating Execution Plans

- Compare:
A. $\pi_{\text {title }}\left(\boldsymbol{\sigma}_{\text {author }=}=\right.$ Bruce Schneier’ $($ Book \bowtie BookAuthor $\left.)\right)$
B. $\pi_{\text {title }}\left(\right.$ Book $\bowtie\left(\boldsymbol{\sigma}_{\text {author }}=\right.$ 'Bruce Schneier ${ }^{\prime}$ BookAuthor $\left.)\right)$
- Relevant information:
- How many records are in each table?
- What indexes do we have?
- How many books did Bruce Schneier write?

Evaluating Execution Plans

- Compare:
A. $\pi_{\text {title }}\left(\boldsymbol{\sigma}_{\text {author }}={ }^{\prime}\right.$ Bruce Schneier’ $($ Book \bowtie BookAuthor $\left.)\right)$
B. $\pi_{\text {title }}\left(\right.$ Book $\bowtie\left(\boldsymbol{\sigma}_{\text {author }}=\right.$ 'Bruce Schneier' $\left.{ }^{\text {BookAuthor })}\right)$
- Suppose:
- BookAuthor has 20K tuples
- Book has 10K tuples (an average of two authors per book)
- Only 2 BookAuthor tuples contain "Bruce Schneier"
- Relevant indexes exist
- What's the performance difference?
A. Processes all 10 K book tuples and 20 K bookAuthor tuples to create a temporary relation with 20 K tuples. Processes at least 50K tuples.
B. Uses indexes to locate 2 BookAuthor tuples and 2 corresponding book tuples. Processes just 4 tuples!

Outline

- Selection Strategies
- Join Strategies
- Join Size Estimation
- Rules of Equivalence

Selection Strategies

- How to perform selection (σ)?
- Linear search is always an option
- Full table scan
- Potentially requires accessing every disk block in the table
- Alternatively, use an index
- Binary search, tree search, or hash table lookup
- Indexes themselves require disk accesses, but it's usually worth it
- Indexes may be partly or entirely stored in memory

Query Type vs Index Type

Condition	Example	Clustering / Primary Index	Ordered Index	Hashed Index
Exact match on candidate key	id = 12345	Easy to locate.	Easy to locate.	Easy to locate.
Exact match on non-key	status $=$ 'Active'	N/A	Find first match (+ potential scan)	Find first match (+ potential scan)
Range query	age between 21 and 65	Find first match + sequential scan	Find first match + scan, but slower	Not useful

Join Strategies

- Joins are most expensive part of query processing
- Number of tuples examined can approach the product of the number of records in tables being joined
- Example
- $\sigma_{\text {Borrower.name }}=$ BookAuthor.author B orrower \times BookAuthor
- Where BookAuthor has 10 K tuples and Borrower has 2 K tuples
- Cartesian join yields 20 million tuples to process

Nested Loop Join

```
for (int i = 0; i < 2000; i++) {
    retrieve Borrower[i];
    for (int j = 0; j < 10000; j++) {
        retrieve BookAuthor[j];
        if (Borrower[i].name == BookAuthor[j].author) {
            construct tuple from Borrower[i] & BookAuthor[j];
        }
    }
}
```


Nested Loop Join

- Simplest and least efficient approach. If each retrieval requires a separate disk access:
- 2 K accesses for Borrower tuples (outer loop)
- 20 million accesses for BookAuthor tuples (inner loop)
- 20,002,000 disk accesses total
- If each disk access takes 10 ms , this takes:
$>200 \mathrm{~K}$ seconds ≈ 55 hours
- Doesn't count time needed to write the temporary join relation (it might not fit in memory)

Nested Block Join

for (int i = 0; i < 2000; i += 20) \{
retrieve block containing Borrower[i]..Borrower[i+19];
for (int j $=0$; j < 10000; j += 20) \{ retrieve block containing BookAuthor[j].. BookAuthor $[j+19]$;
for (int $k=0 ; k<19 ; k++$)
for (int $1=0 ; 1<20 ; ~ l++)$
if (Borrower[i+k].name == BookAuthor[j+l].author) construct tuple from Borrower[i+k] \& BookAuthor[j+1];
\}
\}

Nested Block Join

- Since tables are stored in blocks, we processes data by block. If each block contains 20 tuples:
- 100 accesses for Borrower tuples (outer loop)
- 500 accesses for BookAuthor tuples (inner loop) executed 100 times $=50 \mathrm{~K}$ accesses
- 50,100 disk accesses total
- This requires $50,100 * 10 \mathrm{~ms} \approx 8.5$ minutes
- 400x faster than nested loop join!

Buffering an Entire Relation

for (int i $=0$; $i<2000$; $i=20$)
retrieve and buffer block containing
Borrower[i]..Borrower[i+19];
for (int j = 0; j < 10000; j += 20) \{ retrieve block containing BookAuthor[j]..BookAuthor[j+19]; for (int $k=0 ; k<2000 ; k++$)
for (int $1=0 ; l<20 ; l++)$
if (Borrower[k].name == BookAuthor[j+l].author)
construct tuple from Borrower[k] \& BookAuthor[j+l];

Buffering an Entire Relation

- Using memory, improvement is possible. If the entire Borrower relation can be stored memory:
- 100 accesses for Borrower tuples (first loop)
- 500 accesses for BookAuthor tuples (second loop)
- 600 accesses total
- The requires 600 * $10 \mathrm{~ms}=6$ seconds
- This is the best possible scenario, since every record is only processed once

Using Indexes to Speed Up Joins

- Example: Borrower \bowtie CheckedOut
- Assume:
- 2K Borrower tuples, 1K CheckedOut tuples
- 20 records per block: 100 and 50 blocks for each table, respectively
- We cannot buffer either table entirely
- Without indexes, a nested block join takes 5050 or 5100 disk accesses
- Depends on which table is in the outer loop

Using Indexes to Speed Up Joins

- Example: Borrower \bowtie CheckedOut
- Suppose we have index on Borrower.borrowerID
- We scan all 1000 CheckedOut records (50 blocks)
- Then, we use the index to match each with a Borrower record
- We only process 1000 CheckedOut records and 1000 Borrower records

Using Indexes to Speed Up Joins

- Limitations:
- Each borrower may require a separate disk access
- 50 accesses for CheckedOut
- 1000 accesses for Borrower
- If the index doesn't fit in memory, traversing the index requires disk accesses
- B+ Tree Indexes require more accesses than Hashed Indexes

- Nevertheless, a major improvement!

Temporary Indexes

- Indexes created and buffered for the purpose of a single query and then discarded
- Suppose neither Borrower nor CheckedOut is indexed
- Borrower \bowtie CheckedOut might cause a temporary index to be built on Borrower.borrowerID
- If an index entry takes ~ 10 bytes, entire index will be $\sim 20 \mathrm{~K}$
- Index construction requires reading all 2 K borrowers $=100$ disk accesses
- Join itself costs up to 1050 disk accesses (see previous slide)
- Total of 1150 disk accesses

Merge Join

- Suppose both tables in a joined are stored in ascending order by the join key
- Using a merge join, we can fetch each tuple once: $50+100=150$ total disk accesses

Merge Join

```
get first tuple from Borrower;
get first tuple from CheckedOut;
while (we still have valid tuples from both relations) {
    if (Borrower.borrowerID == CheckedOut.borrowerID) {
        output one tuple to the result;
        get next tuple from CheckedOut;
        // We might have more checkouts for this borrower,
        // so keep current borrower tuple
    }
    else if (Borrower.borrowerID < CheckedOut.borrowerID)
        get next tuple from Borrower;
    else
        get next tuple from CheckedOut;
}
```


Order of Joins

- For multiple joins, performance can be greatly impacted by the order of the joins
- Example: $\pi_{\text {last, first, authorName }}$ Borrower \bowtie BookAuthor \bowtie CheckedOut
- Assume:
- 2K Borrower, 1K CheckedOut, and 10K Author tuples
- Each book has an average of 2 authors
- Three ways to do the join operations:
A. (Borrower \bowtie BookAuthor) \bowtie CheckedOut
B. (BookAuthor \bowtie CheckedOut) \bowtie Borrower
C. (Borrower \bowtie CheckedOut) \bowtie BookAuthor
- Final number of tuples is the same, but intermediate joins create temporary tables. Which order is most efficient?

Order of Joins

- Assume:
- 2K Borrower, 1K CheckedOut, and 10K Author tuples
- Each book has an average of 2 authors
- Three ways to do the (binary commutative) join operations:
A. (Borrower \bowtie BookAuthor) \bowtie CheckedOut
B. (BookAuthor \bowtie CheckedOut) \bowtie Borrower
C. (Borrower \bowtie CheckedOut) \bowtie BookAuthor
- Example:
A. Borrower and BookAuthor have no attributes in common, so a cartesian product is formed. This results in a temporary table with 20 million tuples!

Statistics and Query Optimization

- Using statistics about database objects can help speed up queries
- Maintaining statistics as the data in the database changes is a manageable process
- Types of statistics
- Table statistics
- Column statistics

Table Statistics

- On a relation r :
- $\mathrm{n}_{\mathrm{r}}=$ number of tuples in the relation
- $1_{r}=$ size (in bytes) of a tuple in the relation
- $\mathrm{f}_{\mathrm{r}}=$ blocking factor, number of tuples per block
- $b_{r}=$ number of blocks used by the relation
- Thus:
- $\mathrm{f}_{\mathrm{r}}=$ floor (block size $/ 1_{\mathrm{r}}$) if tuples do not span blocks
- $\mathrm{b}_{\mathrm{r}}=$ ceiling $\left(\mathrm{n}_{\mathrm{r}} / \mathrm{f}_{\mathrm{r}}\right)$ if tuples in r reside in a single file and are not clustered with other relations

Table Statistics

Block 1		Block 2		Block 3	
Tuple 1	Tuple 2	Tuple 3	Tuple 4	Tuple 5	Tuple 6

- The relation contains 6 tuples $\left(n_{r}=6\right)$
- Each tuple occupies 200 bytes $\left(1_{r}=200\right)$
- Each block holds 2 tuples $\left(f_{r}=2\right)$
- The relation occupies 3 blocks $\left(b_{r}=3\right)$

Column Statistics

- On a column A , in relation r :
- $\mathrm{V}(\mathrm{A}, \mathrm{r})=$ number of distinct values in the column
- If A is a superkey, then $V(A, r)=n_{r}$
- If column A is indexed, $V(A, r) s$ relatively easy to maintain
- Keep track of the count of entries in the index
- May also be useful to store a histogram of the relative frequency of column values in different ranges
- May or may not have statistics on other columns
- The number of times each column value occurs can be estimated by $\mathrm{n}_{\mathrm{r}} / \mathrm{V}(\mathrm{A}, \mathrm{r})$

Example Statistics

book_author

call number	author

checked_out

call_number	copy_number	borrower_id	date_due

Table	\mathbf{n}_{r}	$\mathbf{1}_{\mathrm{r}}$
borrower	2000	58 bytes
checked_out	1000	74 bytes
book_author	10,000	100 bytes

Calculating the Size of a Cartesian Product

- Cartesian product: $\mathrm{r} \times \mathrm{s}$
- Number of tuples in join: $\mathrm{n}_{\mathrm{r} \times \mathrm{s}}=\mathrm{n}_{\mathrm{r}} * \mathrm{n}_{\mathrm{s}}$
- Size of each tuple in join: $1_{r \times s}=1_{r}+1_{s}$
- Example: borrower \times checked_out
- $\mathrm{n}_{\text {borrower } \times \text { checked_out }}$
- $1_{\text {borrower } \times \text { checked_out }}$

Estimating the Size of a Join

- Natural join: $\mathrm{r} \bowtie \mathrm{s}$, where r and s have A in common
- Estimated number of tuples in join:

$$
n_{r \propto s}=n_{s} * n_{r} / \max (V(A, r), V(A, s))
$$

- Number of unique values: $V(A, r \bowtie s)=\min (V(A, r), V(A, s))$
- Some tuples in the relation with the larger number of column values do not join with any tuples in the other relation
- If r and s have no attributes in common, then a cartesian product is performed

Example Join Estimation

- $\pi_{\text {name, author }}$ Borrower \bowtie BookAuthor \bowtie CheckedOut
- Which evaluation plan generates the fewest tuples in the intermediate table?
A. (Borrower \bowtie BookAuthor) \bowtie CheckedOut
B. (BookAuthor \bowtie CheckedOut) \bowtie Borrower
C. (Borrower \bowtie CheckedOut) \bowtie BookAuthor

Rules of Equivalence

- Reordering the joins improved performance, without changing the results!
- More generally, two formulations of a query are "equivalent" if they produce the same set of results
- Tuples aren't necessarily in the same order
- The "rules of equivalence" describe when reordering is allowed
- For a given query, a good DBMS will create several "equivalent" evaluation plans and choose the most efficient one

Rules of Equivalence

- Example: find the titles of all books written by "Bruce Schneier"
- SELECT title FROM book NATURAL JOIN book_author WHERE author = "Bruce Schneier"
- "Equivalent" execution plans:
A. $\pi_{\text {title }}\left(\boldsymbol{\sigma}_{\text {author }=\text { 'Bruce Schneier’ }}(\right.$ Book \bowtie BookAuthor $\left.)\right)$
B. $\pi_{\text {title }}\left(\right.$ Book $\bowtie\left(\boldsymbol{\sigma}_{\text {author }}={ }^{\text {'Bruce Schneier }}\right.$ ' BookAuthor $\left.)\right)$
- "Equivalent" in terms of results, not performance!

Math Review

- Commutativity:
- A binary operation * is commutative if for all x, y : $x * y=y * x$
- Associativity
- A binary operation * is associative if for all x, y, z : $(x * y) * z=x *(y * z)$

Rules of Equivalence

1. Cascade of $\boldsymbol{\sigma}$. A conjunctive selection condition can be broken up into a cascade (that is, a sequence) of individual σ operations:

2. Commutativity of σ. The σ operation is commutative:
$\sigma_{c_{1}}\left(\sigma_{c_{2}}(R)\right) \equiv \sigma_{c_{2}}\left(\sigma_{c_{1}}(R)\right)$
3. Cascade of π. In a cascade (sequence) of π operations, all but the last one can be ignored:
$\pi_{\text {List }_{1}}\left(\pi_{\text {List }_{2}}\left(\ldots\left(\pi_{\text {List }_{n}}(R)\right) \ldots\right)\right) \equiv \pi_{\text {List }_{1}}(R)$
4. Commuting σ with π. If the selection condition c involves only those attributes $A_{1}, \ldots, A_{\mathrm{n}}$ in the projection list, the two operations can be commuted:
$\pi_{A_{1}, A_{2}, \ldots, A_{n}}\left(\sigma_{c}(R)\right) \equiv \sigma_{c}\left(\pi_{A_{1}, A_{2}, \ldots, A_{n}}(R)\right)$

Rules of Equivalence

5. Commutativity of $\bowtie($ and $\times)$. The join operation is commutative, as is the \times operation:
$R \bowtie_{c} S \equiv S \bowtie_{c} R$
$R \times S \equiv S \times R$
6. Commuting σ with \bowtie (or \times). If all the attributes in the selection condition c involve only the attributes of one of the relations being joined-say, R-the two operations can be commuted as follows:

$$
\sigma_{c}(R \bowtie S) \equiv\left(\sigma_{c}(R)\right) \bowtie S
$$

7. Commuting π with $\bowtie\left(\boldsymbol{o r} \times\right.$). Suppose that the projection list is $L=\left\{A_{1}, \ldots\right.$, $\left.A_{n}, B_{1}, \ldots, B_{m}\right\}$, where A_{1}, \ldots, A_{n} are attributes of R and B_{1}, \ldots, B_{m} are attributes of S. If the join condition c involves only attributes in L, the two operations can be commuted as follows:
$\pi_{L}\left(R \bowtie_{c} S\right) \equiv\left(\pi_{A_{1}, \ldots, A_{n}}(R)\right) \bowtie_{c}\left(\pi_{B_{1}, \ldots, B_{m}}(S)\right)$

Rules of Equivalence

8. Commutativity of set operations. The set operations \cup and \cap are commutative, but - is not.
9. Associativity of \bowtie, x, \cup, and \cap. These four operations are individually associative; that is, if both occurrences of θ stand for the same operation that is any one of these four operations (throughout the expression), we have: ($R \theta$ S) $\theta T \equiv R \theta(S \theta T)$
10. Commuting σ with set operations. The σ operation commutes with \cup, \cap, and - . If θ stands for any one of these three operations (throughout the expression), we have:
$\sigma_{c}(R \theta S) \equiv\left(\sigma_{c}(R)\right) \theta\left(\sigma_{c}(S)\right)$
11. The π operation commutes with \cup.
$\pi_{\mathrm{L}}(R \cup S) \equiv\left(\pi_{L}(R)\right) \cup\left(\pi_{L}(S)\right)$

Rules of Equivalence

12. Converting a (σ, \times) sequence into \bowtie. If the condition c of a σ that follows $a \times$ corresponds to a join condition, convert the (σ, \times) sequence into $a \bowtie$ as follows: $\left(\sigma_{c}(R \times S)\right) \equiv\left(R \bowtie_{c} S\right)$
13. Pushing σ in conjunction with set difference.
$\sigma_{c}(R-S)=\sigma_{c}(R)-\sigma_{c}(S)$
However, $\boldsymbol{\sigma}$ may be applied to only one relation:
$\sigma_{c}(R-S)=\sigma_{c}(R)-S$
14. Pushing σ to only one argument in \cap.

If in the condition σ_{c} all attributes are from relation R , then:
$\sigma_{c}(R \cap S)=\sigma_{c}(R) \cap S$
15. Some trivial transformations.

If S is empty, then $R \cup S=R$
If the condition c in σ_{c} is true for the entire R, then $\sigma_{c}(R)=R$.

Push Selections Inward

- Do selections as early as possible
- Reduces ("flattens") the number of records in the relation(s) being joined
- Example:
- $\pi_{\text {title }}\left(\boldsymbol{\sigma}_{\text {author }}=\right.$ 'Bruce Schneier’ $($ Book \bowtie BookAuthor $\left.)\right)$
- $\pi_{\text {title }}\left(\right.$ Book $\bowtie\left(\boldsymbol{\sigma}_{\text {author }}={ }^{`}\right.$ Bruce Schneier’ ${ }^{\prime}$ BookAuthor $\left.)\right)$
- Sometimes this is not feasible:
- $\sigma_{\text {Borrower.name }}=$ BookAuthor.author Borrower \times BookAuthor
- Alter the structure of the selection itself
- Find late checked out books that cost more than $\$ 20.00$.
- $\sigma_{\text {purchasePrice }}>20 \wedge$ dateDue < today Book \bowtie CheckedOut
- $\sigma_{\text {purchasePrice }}>{ }_{20}$ Book $\bowtie \sigma_{\text {dateDue }<\text { today }}$ CheckedOut

Push Projections Inward

- Do projections as early as possible
- Reduces ("narrows") the number of columns in the relation(s) being joined
- Example:
- $\pi_{\text {name, title, dateDue }}$ Borrower \bowtie CheckedOut \bowtie Book
- $\pi_{\text {name, title, dateDue }}$ Borrower \bowtie
($\pi_{\text {borrowerID, }}$ title, dateDue CheckedOut \bowtie Book)
- Reduces the number of columns in the temporary table from the intermediate join

