Web Database Applications

CSCI 220: Database Management and Systems Design

START RECORDING

Practice Quiz: Docker

* Discuss with a neighbor

* First, explain the difference between Docker images and containers

* Next, describe what each of the following commands does:

* docker run

» docker stop

* docker start

e docker rm

* docker exec

» docker logs

* docker ps

Today you will learn...

* How to build dynamic web pages using databases and HTML

* You will not learn:
* How to create secure or maintainable web applications!

Hyper Text Markup Language
(HTML)

HyperText Markup Language (HTML)

* HyperText: Links allow
instant access to related
documents

* A revolutionary idea
at the time!

* Markup language: The
language annotates
content to describe how
to render it

Final Report

Egr_o\p_egp\Conference on Expert Systems
boldface

Submitted by Justin Parker

Center

First of all, our thanks go out to the following sponsors for their
support of the conference and its supplemental activities.

Allied Interactive
Sybernetics, Inc. make these bullets
Dynamic Solutions of New Jersey

!
The conference was a great successclt ran a full four days, including
workshops and special sessions. Subjective feedback from conference
attendees was largely positive, and financially the revenues resulted
in a surplus of over $10,000.

VWM_/\NVVM

HTML Source Code

<!doctype html>
<html>
<head>
<title>Example Domain</title>

<meta charset="utf-8" />
<meta http-equiv="Content-type" content="text/html; charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<style type="text/css">
body {
background-color: #f0f0£f2;
margin: 0;
</style>
</head>
<body>
<div>
<hl>Example Domain</h1l>
<p>This domain is for use in illustrative examples in documents. You may use this
domain in literature without prior coordination or asking for permission.</p>
<p>More information...</p>
</div>
</body>
</html>

Decoded and Rendered

eo0e0e [J - (< W Not Secure — example.com C ©

Example Domain

This domain is for use in illustrative examples in documents. You may use this
domain in literature without prior coordination or asking for permission.

More information...

HTML History

* First standardized in 1993
e Continuously updated since then

e Plain text source code
* HTML tags define HTML elements

10

HTML Tags

<html></html>
<head></head>
<body></body>
<title></title>
<!-- Comment -->

<!doctype html>

<html>

<head><title>Hello World!</title></head>
<body>

This is my first web page.

<!-- Under construction -->

</body>

</html>

11

HTML Tags

<p></p> Define a paragraph

 Create a line break

<hl></h1> Create a heading (also, try <h2>,...)
 Create bold text

<i></i> Create italicized text

<!doctype html>

<html>

<head><title>Hello World!</title></head>
<body>

<hl>Hello World!</hl>

<p>This is my first web page.</p>
</body>

</html>

12

Anchor Tag

Hyperlinks are created using the <a> tag.
The href property gives a URL for the link.

Example:
Link: Clark University

Link: Clark University

13

Hyper Text Transfer Protocol
(HTTP)

HyperText Transfer Protocol (HTTP)

* HTTP specifies requests and responses between clients and servers
* For reliable transport, TCP/IP is typically used

* The client (called a browser) connects to a web server, by default on port 80
(HTTP) or port 443 (HTTPS)

* Any kind of data can be transferred:
* HTML
* JSON data
* Images
* Video streams

HTTP

HyperText
Transfer

Protocol
http://www.ltg.ed.ac.uk/

Fle Edt View Hgtory Bo¢
By city

e Mazatlan User clicks

e Oaxaca

o Tim m—-.—@
http:/fweather example.orgfoax.. ﬁ

~ht/WhatAreURIs/

061’
A
GET http://weather.example.org/oaxaca HTTP/1.1

Host: weather.example.org Server handles

Accept: application/xhtml+xml "‘oo request

% e

nim|—

LN -

P

HTTP/1.1 200 OK - I

Content-Length: 45178
Content-Type: application/xhtml+xml; charset=utf-8

<!DOCTYPE htm! PUBLIC “...
<htm| xmins="http://www...
<head> Web server for

<title>5 day forecast . . . weather.example.org

—
e"’(
Five day forecast for Daxaca 90

File Edk !iew Hstory Book

Today's forecast groyser interprets representation,

displays presentation
Hot and windy

http://www.ltg.ed.ac.uk/~ht/WhatAreURIs/
http://www.ltg.ed.ac.uk/~ht/WhatAreURIs/

HTTP Request Messages

 An HTTP request has two main parts: a method (action) and
a URI (uniform resource identifier) upon which to perform
the action.

* HTTP methods are OPTIONS, GET, HEAD, POST, PUT, DELETE,
TRACE, CONNECT.

* The URI must specify the path to a resource (e.g. a file or
directory).

HTTP Request Example

Suppose the user types the URL:
http://www.clarku.edu/

The browser will find the IP address for the host
www.clarku.edu and create a TCP/IP connection to it

on port 80

http://www.clarku.edu/

HTTP Request Example

The HTTP request message looks like:
GET / HTTP/1.1
Host: www.clarku.edu:80

User—-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-
US; rv:1.8.1.5) Gecko/20070713 Firefox/2.0.0.5

Accept:
text/xml, application/xml, application/xhtml+xml, text/html
;g=0.9, text/plain;g=0.8, image/png, */*;g=0.5

Accept-Language: en-us,en;g=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;g=0.7,*;9=0.7
Keep-Alive: 300

Connection: keep-alive

HTTP Response Messages

An HTTP response has three main parts: a status, some
headers, and the message body.

HTTP status codes include OK, FORBIDDEN, NOT FOUND,
INTERNAL SERVER ERROR, ...

For successful requests, the status of OK is followed by
headers which explain how to decode the message body.

HTTP Response Example

An HTTP response message looks like:

HTTP/1.1 200 OK
Date: Wed, 01 Aug 2007 17:33:41 GMT

Server: Apache/1.3.37 (Unix) mod ssl/2.8.28
OpenSSL/0.9.71 -

Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html

17b

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Strict//EN"

Content Type

Notice the header field called Content-Type

HTTP/1.1 200 OK
Date: Wed, 01 Aug 2007 17:33:41 GMT

Server: Apache/1.3.37 (Unix) mod ssl1/2.8.28
OpenSSL/0.9.71 -

Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html

This indicates the that the message can be interpreted as encoded
in plain text and/or HTML.

Web Application Programming

Dynamic Web Pages

* The earliest web pages were static — fixed content which did not
change unless edited by a human editor.

* A dynamic web page is generated by a computer program, based on
some transaction between client and server.

* Example: shopping at amazon.com

Dynamic Web Pages

There are many ways to develop dynamic web pages.

e Java Servlet: A server-side Java application which processes
HTTP requests and generates HTTP responses

e Java Server Pages: A programming language which mixes
HTML tags, plain text, and Java code scriptlets

Dynamic Web Pages

* PHP: Hypertext Preprocessor: A programming language
embedded in HTML documents

* Active Server Pages: Microsoft’s server side language, based
on Visual Basic Script

* JavaScript frontend and backend: Pages built dynamically in
users' browsers using JavaScript, served by a backend also
running JavaScript code

* CGI Scripting: A script (Python, Bash, etc.) can read HTTP
headers, and use STDOUT to generate HTML output

Dynamic Web Pages

* WSGI Applications: One step up from CGI scripting, includes
higher-level protocols for communication between a web
server and application code

* Django: High-level framework that encourages a model-
view-controller design pattern, secure coding. Python
backend.

* Similar to Ruby on Rails

Server Stacks

* Operating system: Windows, Linux, macOS (less common), etc.
* Web server: Apache, nginx, etc.

» Application code: Java server pages, PHP, node.js, Django, etc.
* Database: MySQL, PostgreSQL, SQLite, MariaDB, etc.

User’s device

Example Stack

* Web browser (Chrome) requests pages
and renders the application’s graphics Company’s device(s)

* Web server (Nginx) passes data
between the browser and the

application code

 Application code (Python) builds the
HTML for dynamic pages, based on data
from the database

* The database (PostgreSQL) manages
physical storage of the data

PostgreSQL

WSGI Example with Python

hello_world.py

def application(env, start response):
start response('200 OK', [('Content-Type', 'text/html')])

return [b"Hello World"]

Run using:

uwsgi \
--socket /var/www/uwsgi/uwsgi.sock \
——-chmod-socket=666 \
--workers 4 \
--logto /uwsgi/uwsgi.log \
--wsgi-file /uwsgi/hello world.py

NGINX Configuration Example

server {

listen 80;
server name localhost;
charset utf-8;

client max body size 75M;

location / { try files Suri @yourapplication;
location /static {
alias /var/www/static;
}
location @yourapplication {
include uwsgl params;
uwsgl read timeout 60s;
uwsgl pass unix:/var/www/uwsgi/uwsgi.sock;

}

31

hello_world.py in Loaded in the Browser

Hello World

32

Response in Web Inspector

X Preview Headers Cookies Sizes Timing Security

I Hello World

Response

® {J

33

Preview Headers Cookies Sizes Timing Security

Summary

URL: http://localhost/
Status: 200 OK
Source: Network
Address: 127.0.0.1:80

Request

GET /HTTP/1.1

Cookie: last_course=javadpython; ipuser=username; csrftoken=BtPUeURx0yLal0zkLKIc4Kohlpf5Bv3
ghoMqT5yBE4gPqnZMXxowGKRBFu2ReTjP

Accept: text/html,application/xhtml+xml,application/xml;g=0.9,*/*;9=0.8
Upgrade-Insecure-Requests: 1
Host: localhost

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/605.1.15 (KHTML, like Gec
ko) Version/14.1.2 Safari/605.1.15

Accept-Language: en-us
Accept-Encoding: gzip, deflate
Connection: keep-alive

Response

HTTP/1.1 200 OK

Transfer-Encoding: Identity
Content-Type: text/html; charset=utf-8
Connection: keep-alive

Date: Mon, 04 Oct 2021 15:25:49 GMT
Server: nginx/1.18.0

34

Internal Server Error

cce 0 < > NN o ¢ >

Internal Server Error

Check logs for the source of the error

File "/uwsgi/hello world.py", line 3

return [b"Hello World]
SyntaxError: EOL while scanning string literal
failed to parse file /uwsgi/hello world.py

unable to load app 0 (mountpoint='"') (callable not found or import error)

35

HTML Forms

Sending data to the web application

HTML Forms

 HTML forms provide input to the webserver

GO«)gle

* Forms specify:
* Where to send data
e What to send

| Search

37

Google Search Form

Google Search responds to HTTP requests with query data:
http://www.google.com/search?g=<value>

<form action="https://www.google.com/search">
<input name="g">

<lnput type="submit" wvalue="Search">

</form>

HTML Form Fields

* We can specify each form field’s name, type, and (default) value

<form>

First Name: <input name="firstname">

Last Name: <input name="lastname" type="text" value="">
</form>

First Name:
Last Name:

type=radio

<form>

<input type="radio" name="role" value="student">Student

<input type="radio" name="role" value="faculty">Faculty

<input type="radio" name="role" value="staff">Staff

<input type="radio" name="role" value="other">0ther

</form>

Student
Faculty
Staff
Other

40

type=checkbox

I have a bike:

<input type="checkbox" name="vehicle" value="Bike">

I have a car:

<input type="checkbox" name="vehicle" value="Car">

I have a airplane:

<input type="checkbox" name="vehicle" value="Airplane">

<p>

I have a bike:
I have a car:)

| -

I have a airplane:)

41

<textarea>

Please leave some comments:

<textarea rows=10 cols=100>
</textarea>

Please leave some comments:

42

<gselect>

<form action="https://cars.com">
I would like more information about:
<select name="car">
<option value="">--Choose an option--</option>
<option value="Subaru">Subaru</option>
<option value="Honda">Honda</option>
<option value="Toyota">Toyota</option>
</select>
<input type="submit">
</form>

I would like more information aboul v --Choose an option-- i} Submit
Subaru
Honda
Toyota

43

GET vs POST

 GET encodes form contents in the URL:
* https://cars.com/?car=Subaru

* POST encodes form contents into the body of the HTTP request, so
the form content won't be shown in the URL:

* https://cars.com/

* Security implications:

* GET should never be used for requests that cause server-side modifications
(e.g., updating the database)

 GET should never be used when a form contains sensitive information

<form action="https://cars.com" method="POST">
I would like more information about:
<select name="car">

<option
<option
<option
<option
</select>

value="">--Choose an option--</option>
value="Subaru">Subaru</option>
value="Honda">Honda</option>
value="Toyota">Toyota</option>

<input type="submit"> 44

</form>

Server-side Processing of Form Data

def get_qgs_post(env):

def

:param env: WSGI environment
:returns: A tuple (gs, post), containing the query string and post data,
respectively
the environment variable CONTENT_LENGTH may be empty or missing
try:
request_body_size = int(env.get("CONTENT_LENGTH", 0))
except (ValueError):
request_body_size = 0
When the method is POST the variable will be sent
in the HTTP request body which is passed by the WSGI server
in the file like wsgi.input environment variable.
request_body = env["wsgi.input"].read(request_body_size).decode("utf-8")
post = parse_qs(request_body)
return parse_qs(env["QUERY_STRING"]), post

application(env, start_response):
gs, post = get_qgs_post(env)

45

Future Topics

* Session state using cookies
* Automated testing
* Web development frameworks

e Common attacks and mitigations:

e Cross Site Request Forgery (CSRF)
e Cross Site Scripting (XSS)
e Clickjacking

46

https://owasp.org/www-community/attacks/
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/Clickjacking

Django

* Python-based framework for web development

* Pros:
* Less code to write
* More maintainable
* More secure

* Cons:
* More to learn

miniFacebook Demo

Explore these files in the csci220-uwsgi repo:
docker-compose.ymi

Dockerfile

miniFacebook.sql

miniFacebook.py

48

Resources

* Sending Form Data

* Input Element documentation has good examples of input types
* csci220-uwsgi GitHub repository

* WSGI Tutorial

49

https://developer.mozilla.org/en-US/docs/Learn/Forms/Sending_and_retrieving_form_data
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input
https://github.com/ClarkuCSCI/csci220-uwsgi/tree/main
https://wsgi.tutorial.codepoint.net/

Project Advice

* Schedule multiple weekly meetings

* Establish a shared system for communication (e.g., Discord, GitHub,
etc.)

* Assign tasks

