
Database Programming
CSCI 220: Database Management and Systems Design

Practice Quiz: SQL DML
§ Write the following as SQL

queries:
§ List the names of all the boats
§ List names of the sailors along

with the names of all the boats
they have ever reserved

§ List each sailor’s ID and name,
along with the number of
reservations they have made

bid bname color
101 Ariel blue
102 Comet red
103 Hornet yellow
104 Lightning yellow

bid sid day
101 22 9/27/2021
102 33 9/28/2021
103 44 9/27/2021
104 44 9/6/2021

sid sname rating age
22 Dustin 7 45
33 Lubber 8 55
44 Sally 10 35

Boats

Reservations
Sailors

Today you will learn…

§ How to interact with a database using a general-
purpose programming language (e.g., Python)

SQL from other Programming Languages

§ SQL is not a general-purpose programming language
§ Tailored for data retrieval and manipulation
§ Relatively easy to optimize and parallelize
§ Can't write entire apps in SQL alone

§ Options:
§ Make the query language “Turing complete”

§ Avoids the “impedance mismatch” but the language would
become more complex

§ Better idea: allow SQL to be used from general-purpose
programming languages

Dynamic SQL

§ Establish a connection to the database
§ With SQLite, just specify the database file name
§ With PostgreSQL, MySQL, etc., specify hostname, username,

password

§ Use the connection to instantiate a “cursor”
§ Use the cursor to:

§ Execute queries
§ Retrieve the results, usually one row at a time
§ Remember to “commit” changes to the DB, so they will persist!

§ When finished, close the cursor and connection

Architecture

DatabaseProgramming
Language

Database
Adapter

Middleware

Python sqlite3 module sqlite3 DB

psycopg2 modulePython PostgreSQL DB

Java JDBC to ODBC Excel

Database Adapter Middleware

§ Application code uses middleware to communicate
with the database
§ Send queries to DB
§ Retrieve records from DB

§ Middleware and database versions must match
§ Middleware and DB are "tightly coupled"

§ Middleware abstracts details of the database from
your application
§ You should be able to update your middleware and DB to their latest

versions without breaking your application

SQL IN PYTHON

Review: Tuples

§ Tuples are similar to lists, but they are immutable
§ Items in a tuple cannot be changed

§ Often used to represent parameters to queries, and
rows from results

>>> alpha = "a","b","c"
>>> alpha = ("a","b","c")
>>> print(alpha)
('a', 'b', 'c')
>>> print(alpha[0])
a
>>> a, b, c = alpha
>>> print(a)
a
>>> numbers = (1, 2, 3)
>>> numbers = (1,)
>>> print(numbers)
(1,)

Database API

§ Python defines a standard API (objects and methods)
for interacting with databases
§ 3rd party developers can write their own libraries which conforms to

the standard.

§ We will use:
§ The sqlite3 module, which is part of the Python distribution
§ The psycopg2 module, which is available from pypi

https://www.python.org/dev/peps/pep-0249/
https://docs.python.org/3/library/sqlite3.html
https://pypi.org/project/psycopg2/

Creating a Connection

§ A Connection object represents a connection to the
database

import psycopg2
con = psycopg2.connect(
 dbname="django",
 user="django",
 password="secret",
 host="db.example.com",
 port="5432",
)

import sqlite3
con = sqlite3.connect('market.db')

Getting a Cursor

§ A Cursor object is used to execute transactions (via
SQL) against the database

import sqlite3
con = sqlite3.connect('market.db')
cur = con.cursor()

Executing a SQL Statement

§ Use the Cursor object’s execute method to run an
SQL statement against the database.

import sqlite3
con = sqlite3.connect('market.db')
cur = con.cursor()
cur.execute("SELECT * FROM stocks")
print(cur.fetchall())

Prints
[('APPL', 1000), ('MSFT', 900), …]

Close the Connection

§ Best practice to close the connection to the database
§ Unclosed connections aren’t usually problem for a local SQLite DB

with a single user, but can cause problems for a multi-user DBs

import sqlite3
con = sqlite3.connect('market.db')
cur = con.cursor()
cur.execute("SELECT * FROM stocks")
print(cur.fetchall())
con.close()

Processing Results

§ After calling the cursor.execute()
method, we can process/interpret the results

§ SELECT queries:
§ results will be zero or more rows of data returned from the database

§ INSERT, UPDATE, and DELETE queries:
§ the result will be the number of rows (zero or more) affected by the

change

Processing SELECT Results

§ Save memory by loading one row into memory at a
time (or a batch of rows)

import sqlite3
con = sqlite3.connect('market.db')
cur = con.cursor()
cur.execute("SELECT * FROM stocks")

Loads all rows into memory at once
for row in cur.fetchall():
 print(row)

Loads one row into memory at a time
for row in cur:
 print(row)

Processing SELECT Results

§ Improve readability by unpacking tuples in your loops

import sqlite3
con = sqlite3.connect('market.db')
cur = con.cursor()
cur.execute("SELECT symbol, price FROM stocks")

for symbol, price in cur:
 print(f"{symbol} costs {price}")

Processing INSERT/UPDATE/DELETE Results

§ The cursor’s rowcount attribute is an integer, the
number of rows affected.

import sqlite3
con = sqlite3.connect('market.db')
cur = con.cursor()
cur.execute(
 "DELETE FROM stocks WHERE symbol ='MSFT'")
print(f"Deleting {cur.rowcount} rows")

Committing Changes

§ For INSERT, UPDATE, and DELETE queries, you
need to call the Connection's commit() method for
your changes to persist
§ You can check if the rowcount is what you expect
§ If your program crashes partway through, you won't make an

incomplete set of changes (i.e., atomicity)

import sqlite3
con = sqlite3.connect('market.db')
cur = con.cursor()
cur.execute(
 "DELETE FROM stocks WHERE symbol ='MSFT'")
con.commit()

Problem: SQL Injection

§ Most likely, SQL queries in an application will be
dependent on some data input by the user.
§ Unless you are careful, your application may be vulnerable to SQL

injection – a major security risk

§ Vulnerable code:
import sqlite3
con = sqlite3.connect('market.db')
cur = con.cursor()
symbol = input("Enter a stock symbol: ")

cur.execute(
 f"SELECT price FROM stocks WHERE symbol='{symbol}'")
Or
cur.execute("SELECT price FROM stocks WHERE symbol='"
 + symbol + "'")
Or any time you simply concatenate strings

Problem: SQL Injection

SQL injection exploits the syntax of SQL to chain extra
statements to an SQL query.

 Everything is okay if the user inputs:
 MSFT

 But suppose user inputs:
 MSFT';DROP TABLE stocks AND 't'='t

The resulting SQL becomes:
 SELECT price from stocks
 WHERE symbol='MSFT';DROP TABLE stocks AND 't'='t'

Problem: SQL Injection

§ Should you worry about SQL injection, and other web
attacks?
§ YES!

§ Bots will automatically test for vulnerabilities in any
internet-connected web server

Solution: Parameterized SQL

§ Have the database driver, not Python, include your
parameters in the query
§ The database knows how to "escape" characters like ' to prevent

SQL injection

import sqlite3
con = sqlite3.connect('market.db')
cur = con.cursor()
symbol = input("Enter a stock symbol: ")
cur.execute(
 "SELECT price FROM stocks WHERE symbol=?",
 (symbol,))

Solution: Parameterized SQL

§ Parameterized SQL should be used every time a
variable is included in a SQL statement

cursor.execute(
 "INSERT INTO stocks VALUES (?,?,?,?,?)",
 (symbol, name, price, earnings, yield))

Best Solution

symbol = input("Enter a stock symbol: ")

Safe, and easy!
Stock.objects.get(symbol=symbol)

Unsafe, but more difficult
Stock.objects.raw(
 f"SELECT * FROM market_stock WHERE symbol={symbol}")

§ Use a high-level framework that protects against
injection vulnerabilities by default
§ Without protections by default, you are liable to forget – just one

mistake can be enough to get hacked

SQL Injection

Source: xkcd.com

27

Sanitize Your Inputs?

https://xkcd.com/327/
https://kevinsmith.io/sanitize-your-inputs/

