
Introduction to Docker
Peter Story

https://www.docker.com/
1

https://www.docker.com/


Find Teammates for Course Project

• If you already have three or four teammates, you are all set!


• If you have a project idea, but don’t have enough teammates, write your 
name(s) and project idea on left-hand side of the board


• If you don’t have a project idea, write your name on the right-hand side 
of the board


• For the first 5 minutes, discuss with others to form your team

2



Today you will learn…

• How to install and run PostgreSQL using Docker

3



What Problems Does Docker Solve?
• If you develop software on your laptop, how do you run it elsewhere?


• A web application, which you need to run on a server


• A program, which a colleague wants to run on their PC so they can help 
with development


• Your laptop’s hard drive died, and after restoring from your backups your 
software won’t run! What changed?!


• Research replicability: different software versions may give different 
results

4



What Problems Does Docker Solve?

• Challenges:


• What dependencies does your software require?


• Does your software support the host’s OS?


• Without Docker, you might spend a half hour, a few hours, or even days 
setting up your software on a different computer


• Using Docker, you can get your software running in minutes!

5



What Problems Does Docker Solve?

• Larger principle: configuration as code

6



Install and Run a Web Server

• Download and run the Nginx web server from Docker Hub:  
 
docker run \  
  --rm \  
  --volume ./public_html:/usr/share/nginx/html \  
  --publish 9999:80 \  
  nginx

7



Install and Run PostgreSQL
• Download and run PostgreSQL from Docker Hub:  

docker run \  
  --rm \  
  --volume ./postgres_data:/var/lib/postgresql/data \  
  --env POSTGRES_PASSWORD=mysecretpassword \  
  --env POSTGRES_USER=myusername \  
  --name postgresdemo \  
  postgres:16.1

• Open a SQL shell:  
docker exec \  
  --interactive \  
  --tty \  
  postgresdemo psql --username=myusername

8



What is Docker?

• Tools for encapsulating software and its dependencies in “Docker Images”


• Tools for distributing and running “Docker Images”


• Docker Hub


• Docker Swarm


• Docker Cloud

9



What is Docker?

https://www.docker.com/what-docker

Virtual Machines: 
OS, Binaries and Libraries, App

Docker Containers: 
Binaries and Libraries, App

10

https://www.docker.com/what-docker


Docker Concepts
• Images 

• Layered: building on top of a 
base image


• Immutable


• Containers 

• Instantiated images


• Mutable


• Ephemeral


• Volumes 

• Connect container filesystem to 
the host, or multiple containers 
together


• Used to persist data


• Networks 

• Docker containers can 
communicate using user-
defined networks

11



Docker Images
• A Docker image is a binary artifact encapsulating a filesystem and 

metadata


• For example, the Nginx image from Docker Hub includes all the 
resources needed to run the Nginx server (program binary, default 
config files, etc.)


• It also includes instructions for how to run the server (the “entrypoint” 
does initial setup, and the “command” points to the Nginx binary)


• Represented as a series of immutable layers

12



Docker Containers
• A Docker Container instantiates an image

Action Docker CLI Container State

Container is created from an image docker run IMAGE Running

Main process in container exits N/A Running → Stopped

Stop signal is sent to container docker stop CONTAINER Running → Stopped

Container is started by Docker docker start CONTAINER Stopped → Running

Container is removed docker rm CONTAINER
Stopped → Deleted 
(container is gone)

13



Creating Docker Images

• Often, you will use pre-built images from Docker Hub:


• PostgreSQL, NGINX, Apache, Rails, Python, etc.


• Keep security in mind: trust official repos, maybe trust automated builds 
(if you read their Dockerfiles), be wary of others


• To package your own software, create your own images using Dockerfiles

14

https://hub.docker.com/explore/


Dockerfile

FROM ubuntu:22.04 

RUN mkdir /root/hello_world 

COPY hello.sh /root/hello_world 

CMD ["/root/hello_world/hello.sh"]

15



Dockerfile Explanation
Dockerfile Docker Image Explanation

FROM ubuntu:22.04 Stripped down Ubuntu 
distribution

Downloaded from 
Docker Hub

RUN mkdir /root/hello_world
Plus a folder created at 

/root/hello_world Adds a layer

COPY hello.sh /root/hello_world
Plus a file at 

/root/hello_world/hello.sh Adds a layer

CMD ["/root/hello_world/hello.sh"]
When the image is run, this 

command will be run Adds a layer

16



Docker Compose

• An important Docker design principle: one process per container


• DON’T install your program, MySQL, Nginx, etc. in the same image/
container


• It is common to use multiple worker processes (e.g., for web requests)


• If you need multiple processes, use Docker Compose to manage multiple 
containers

17



Demos

18



Run Hello World in a Container

docker run ubuntu echo 'Hello world'

Image name, available on Docker Hub 
(latest is used by default)

Command run in the 
container

https://docs.docker.com/engine/tutorials/dockerizing/19



Run an Interactive Container

docker run -it ubuntu bash

docker run --help 

… 

-t, --tty          Allocate a pseudo-TTY 
-i, --interactive  Keep STDIN open even if not attached

20



Run a Daemon Container

$ docker run -d ubuntu sh -c "while true; do echo hello world; sleep 1; done" 
 
$ docker ps [-a] 

$ docker logs CONTAINER_NAME

docker run --help 

… 

-d, --detach  Run container in background and print container ID

21



Enter a Running Container

docker exec -it CONTAINER_NAME bash

docker exec --help 

… 

-t, --tty          Allocate a pseudo-TTY 
-i, --interactive  Keep STDIN open even if not attached

22



Stop and Remove a Daemon Container

$ docker stop CONTAINER_NAME 

$ docker rm CONTAINER_NAME

23



Build an Image
• View:


• Dockerfile


• hello.sh (must be executable!)


• Run these commands:


• docker build --tag hello_world . 

• docker run hello_world

24



Volume Map Content to a Web Server
• Review the documentation: https://hub.docker.com/_/nginx/


• View: html/index.html


• Run this command:


• docker run --rm --volume ./html:/usr/share/nginx/
html:ro --publish 127.0.0.1:80:80 nginx:1.25 

• Load localhost


• Edit the HTML file, then refresh

25

https://hub.docker.com/_/nginx/


Compose Files
• Instead of remembering 

Docker’s CLI syntax, describe 
the setup in a docker-
compose.yml file


• View: docker-compose.yml 


• Run:


• docker compose up 

• docker ps

version: '3.4' 
services: 
  nginx: 
    image: nginx:1.25 
    ports: 
      - "127.0.0.1:80:80" 
    volumes: 
      - "./html:/usr/share/nginx/html:ro"

26



Compose Commands

• Ensures all containers are started. If necessary, they will also be built and 
created. -d will start them in the background. You can also specify a 
service name, to just start one container. 
docker compose up [—d] [service_name] 

• Restart all containers. 
docker compose restart [service_name] 

• Stop all containers. 
docker compose stop [service_name]

27



Compose Commands

• Stop and remove all containers. 
docker compose down [service_name]


• Dangerous: Stop and remove all containers and volumes. 
docker compose down -v 

• View a container’s logs. -f follows the logs, so they are continually 
updated. 
docker compose logs [-f] [service_name]

28



List…
• List containers: 
docker ps [-a]


• List images: 
docker image ls


• List networks: 
docker network ls


• List volumes: 
docker volume ls

29



Documentation

• Installing Docker


• Dockerfile reference 


• Docker Compose reference 


• Docker CLI  

30

https://docs.docker.com/get-docker/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/compose/compose-file/
https://docs.docker.com/engine/reference/commandline/cli/

