Introduction to Databases
CSCI 220: Database Management and Systems Design

Welcome to CSCI 220!

First 10 minutes:

e Sign-in on the attendance sheet

 Create a name card

 Add a profile picture to your Canvas account

 Form a group of 3-5 people and discuss: What are you hoping to learn
in this course”? What is a database?

About the Course

* Tour of the course website, Canvas, and Gradescope

e https://cs.clarku.edu/~cs220/

e https://canvas.clarku.edu

 Some lectures were adapted from material by Zhenguang Gao, George
Kollios, Simon Miner, and John and Tricia Magee

https://cs.clarku.edu/~cs220/
https://canvas.clarku.edu

Today you will learn about:

 Why databases are ubiquitous
 The powerful capabillities of database systems

 Database design basics

Why Databases?

 Databases add a layer of abstraction between an application and the
physical storage of data

 Databases make it easier to write reliable, high-performance applications

L[]
o

SQLI
0 0

Smartphone L] L]
Web Browsers Web Servers Database Servers

Smartphone App Architecture

User’s device

 App code renders the app’s
graphics.

 The app reads data from a SQLite

database on disk.

Web App Architecture

Web browser (e.g., Chrome, Safari)
requests pages and renders the
application’s graphics

Web server (e.g., nginx, Apache) passes
data between the browser and the
application code

Application code (e.g., Django) builds the
HTML for dynamic pages, based on data
from the database

The database (e.g., PostgreSQL, MySQL)
manages physical storage of the data

User’s device

Company’s device(s)

PostgreSQL

Does your app need a database?

* |s your data updated by multiple users?
 Databases help manage concurrency

* Do you need to enforce properties of your data (e.g., preventing overdrawing from an ATM,
ensuring all users have email addresses, etc.)?

« Databases enforce constraints Our focus is on

“relational databases,”
which offer all of these
* Databases offer high-performance operations on complex data fegtures. |f some of these

features aren’t necessary,
a NoSQL database could
 Databases protect data integrity be sufficient.

* |s your data complex (e.g., relationships between entities)?

* Should your app recover gracefully from a crash or power failure?

Example: Facebook

 Facebook definitely uses a
database

* A simplified list of Facebook’s data:

 Profile info: name, emaill,
password, birthday, ...

e Status updates

https://www.cnet.com/pictures/facebook-then-and-now-pictures/

* Friendship

https://www.cnet.com/pictures/facebook-then-and-now-pictures/

Example: Facebook Database

Primary Key

\ : : Users

ID Name Email Password

111 Peter Story PeStory@clarku.edu i

..

..

113 LiHan LHan@clarku.edu = **

Foreign Ke
J y\ Status Updates

Timestamp User ID Text

2023-11-2910:57:01 111 The CMACD building is great!

...

...

2023-11-29 11:46:29 113 Consider declaring your major!

Friendship
User ID 1 User ID 2

..

N/

Foreign Keys

mailto:PeStory@clarku.edu
mailto:JMagee@clarku.edu
mailto:LHan@clarku.edu

Primary and Foreign Keys

* A primary key uniquely identifies a record (row) in a table
* |t is efficient to retrieve a record if you know its primary key

 Primary keys often appear in URLSs:
https://www.facebook.com/profile.php?id=111

* A foreign key references a primary key in another table

* This allows relationships between tables

Constraints

Data types

Referential integrity constraints

Unigueness constraints (AKA key constraints)
Additional constraints:

 Email must be formatted properly

o Status text must be less than a certain length

Data Modeling

* |t is essential to understand the data used by an application, the
relationships between the data, and the constraints on the data.

* This is your database schema

* \We depict the schema using diagrams before we implement the schema
INn code;

* An Entity-Relationship diagram shows relationships and constraints

* A tabular depiction of the database schema (i.e., the relational model)
can show example data, and is closer to how data is stored on disk

Example: Facebook ER Model

Attribute

Passwort Qimestame) C_Toxt_>

e ‘
T

Relatio hp

Status

Example: Facebook Relational Model

Users

ID Name Email Password

Friendship

User ID 1 UserID 2

Status Updates

Timestamp User ID Text

Example: Facebook Relational Model with Data

Users

ID Name Email Password

111 Peter Story PeStory@clarku.edu i

..

Friendship

..

113 ~ LiHan LHan@clarkuedu = ™ UserID1 User ID 2

Status Updates

Timestamp User ID Text __

2023-11-2910:57:01 111 The CMACD building is great!

...

...

2023-11-29 11:46:29 113 Consider declaring your major!

mailto:PeStory@clarku.edu
mailto:JMagee@clarku.edu
mailto:LHan@clarku.edu

Course Overview

2-3 weeks: Data modeling

2-3 weeks: Database queries

2-3 weeks: Database programming
1 week: Database file structures

1 week: Crash recovery

1 week: Concurrency control

2 weeks: NoSQL databases

Preview of Future lopics

Database Properties (ACID)

Atomicity: All of a transaction must be completed, or none of it

Consistency (Correctness): Don’t allow the database to enter a
corrupted state

Isolation: Concurrently executed transactions must have the same effects

as sequentially executed transactions (since databases usually have
multiple users)

Durability: After a transaction completes, it should persist even if the
power fails, etc.

Database Management Systems (DBMSs)

 SQLite: suitable for single-user apps (doesn’t have a server process)

 PostgreSQL.: free open-source (FOSS) DB with many advanced features
 MySQL: widely deployed FOSS DB with fewer features and more quirks
* Proprietary DBs: Oracle, IBM DB2, Microsoft SQL, Microsoft Access, ...

« NoSQL DBs: (typically) don’t use a relational data model, and sacrifice
ACID properties for performance (Redis, MongoDB, ...)

Database Memory Hierarchy

CPU cache and main memory are
fast, but have limited capacity

The hard disk Is slower, but has
much more capacity

Furthermore, memory is volatile,
whereas the hard disk Is hon-volatile

DMBSs use the memory hierarchy
to achieve high performance and
the ACID properties

CPU

CPU Cache

Main Memory

Hard Disk

Very Fast

Fast

Slow

Database Files

SQLite is simple: one file, such as db.sqlite

PostgreSQL and (other multiuser databases) manage 1000s of files:
ls /var/lib/postgresql/data

e /var/lib/postgresql/
data/postgresql.conf

e /var/lib/postgresql/
data/pg_xact/0000

e /var/lib/postgresql/
data/pg_subtrans/
0000

e /var/lib/postgresql/
data/pg_ident.conf

e /var/lib/postgresql/
data/postmaster.pid

e /var/lib/postgresql/
data/
postgresqgl.auto.conf

e /var/lib/postgresql/
data/pg_multixact/
offsets/0000

e /var/lib/postgresql/
data/pg_multixact/
members/0000

e /var/lib/postgresql/
data/pg_wal/
00000001000000000000
0001

e /var/lib/postgresql/
data/pg_logical/
replorigin_checkpoin
T

e /var/lib/postgresql/
data/base/1/826

e /var/lib/postgresql/
data/base/1/3599

e /var/lib/postgresql/
data/base/4/2615

e /var/lib/postgresql/
data/postmaster.opts

e /var/lib/postgresql/
data/pg_hba.conf

e /var/lib/postgresql/
data/PG_VERSION

e /var/lib/postgresql/
data/global/4176

e /var/lib/postgresql/
data/global/6302

Database Indexes

 How to locate the user with ID 1117

* One approach: scan the user table, check every record, return the one with id=111.
Very slow for large tables! Other ideas?

 Keep records ordered by ID, and use a binary search. But updates will be slow.

 Use a search tree index. Keep records sorted while allowing insertions, deletions,
and updates. The B+-tree (multiway search tree) is common.

 Use a hash table index. Much faster for exact match queries, but cannot support
range queries.

 Primary and foreign keys should be indexed

Database Queries

How to retrieve records from a database?
Using SQL (Structured Query Language)
Find the record for the user with ID 111;
SELECT =

FROM user
WHERE user.1id = 111

Supports sorting, queries across tables, computing averages, etc.

Data Retrieval

* Your SQL query tells the database what you want. The database (usually)
retrieves the results as efficiently as possible.

e Often, several plans are considered. For example:
e Should indices be used?

* \When tracing relationships across tables (joining), which table to start
with?

 The choice of plan depends on statistics collected by the database (e.q.,
table size)

Data Integrity: Transaction Processing

e Suppose John and Jane withdraw $50 and $100 from a common account:

John: Jane:

get balance get balance

if balance > $50 if balance > $100
balance = balance - $50 balance = balance - $100
update balance update balance

e |nitial balance $300. Final balance? Depends on whether isolation is
enforced!

Data Integrity: Recovery

e Suppose we try to transfer $50 from account A to account B:

get balance for A

if balancea > $50

balancea = balancea — 50
update balancea in database
get balance for B

<«—— Money will be lost if these steps

aren’t completed!
balances = balanceg + 50

update balanceg In database

 Databases can recover from crashes or power outages by rolling back an
unfinished transaction. This preserves atomicity.

If Time: Research a DBMS

Form a group of 3-5 students

Each student should research a different relational database. Consider researching:
SQLite, PostgreSQL, MySQL, Oracle, IBM DB2, Microsoft SQL, Microsoft Access

For your database, search online to answer these questions:
 \When was the database first released? When was it last updated?
» How widely deployed is the database (e.g., number of installs)?
 \What makes this database unique?

~10 minutes before class ends, discuss your findings with your group

Prepare for Lab

