
Introduction to Databases
CSCI 220: Database Management and Systems Design

Welcome to CSCI 220!

• First 10 minutes:

• Sign-in on the attendance sheet

• Create a name card

• Add a profile picture to your Canvas account

• Form a group of 3-5 people and discuss: What are you hoping to learn
in this course? What is a database?

About the Course

• Tour of the course website, Canvas, and Gradescope

• https://cs.clarku.edu/~cs220/

• https://canvas.clarku.edu

• Some lectures were adapted from material by Zhenguang Gao, George
Kollios, Simon Miner, and John and Tricia Magee

https://cs.clarku.edu/~cs220/
https://canvas.clarku.edu

Today you will learn about:

• Why databases are ubiquitous

• The powerful capabilities of database systems

• Database design basics

Why Databases?
• Databases add a layer of abstraction between an application and the

physical storage of data

• Databases make it easier to write reliable, high-performance applications

Web Browsers Web Servers Database Servers
Smartphone

App
Code

SQLite
DB

Smartphone App Architecture

• App code renders the app’s
graphics.

• The app reads data from a SQLite
database on disk.

User’s device

App Code

SQLite DB

Web App Architecture
• Web browser (e.g., Chrome, Safari)

requests pages and renders the
application’s graphics

• Web server (e.g., nginx, Apache) passes
data between the browser and the
application code

• Application code (e.g., Django) builds the
HTML for dynamic pages, based on data
from the database

• The database (e.g., PostgreSQL, MySQL)
manages physical storage of the data

User’s device

Company’s device(s)

Nginx

Django

PostgreSQL

Chrome

Does your app need a database?
• Is your data updated by multiple users?

• Databases help manage concurrency

• Do you need to enforce properties of your data (e.g., preventing overdrawing from an ATM,
ensuring all users have email addresses, etc.)?

• Databases enforce constraints

• Is your data complex (e.g., relationships between entities)?

• Databases offer high-performance operations on complex data

• Should your app recover gracefully from a crash or power failure?

• Databases protect data integrity

Our focus is on
“relational databases,”
which offer all of these

features. If some of these
features aren’t necessary,
a NoSQL database could

be sufficient.

Example: Facebook
• Facebook definitely uses a

database

• A simplified list of Facebook’s data:

• Profile info: name, email,
password, birthday, …

• Status updates

• Friendship https://www.cnet.com/pictures/facebook-then-and-now-pictures/

https://www.cnet.com/pictures/facebook-then-and-now-pictures/

Example: Facebook Database
Users

ID Name Email Password

111 Peter Story PeStory@clarku.edu *********

112 John Magee JMagee@clarku.edu *********

113 Li Han LHan@clarku.edu *********

Status Updates
Timestamp User ID Text

2023-11-29 10:57:01 111 The CMACD building is great!

2023-11-29 11:38:17 113 Welcome back students!

2023-11-29 11:46:29 113 Consider declaring your major!

Friendship
User ID 1 User ID 2

111 112

111 113

112 113

Primary Key

Foreign Key

Foreign Keys

mailto:PeStory@clarku.edu
mailto:JMagee@clarku.edu
mailto:LHan@clarku.edu

Primary and Foreign Keys

• A primary key uniquely identifies a record (row) in a table

• It is efficient to retrieve a record if you know its primary key

• Primary keys often appear in URLs: 
https://www.facebook.com/profile.php?id=111

• A foreign key references a primary key in another table

• This allows relationships between tables

Constraints
• Data types

• Referential integrity constraints

• Uniqueness constraints (AKA key constraints)

• Additional constraints:

• Email must be formatted properly

• Status text must be less than a certain length

Data Modeling
• It is essential to understand the data used by an application, the

relationships between the data, and the constraints on the data.

• This is your database schema

• We depict the schema using diagrams before we implement the schema
in code:

• An Entity-Relationship diagram shows relationships and constraints

• A tabular depiction of the database schema (i.e., the relational model)
can show example data, and is closer to how data is stored on disk

Example: Facebook ER Model

User Status

Friend Of

Posts

Name
Email

ID

Password Timestamp Text

NN

N1

Relationship

Entity

Attribute

Example: Facebook Relational Model
Users

ID Name Email Password

Status Updates
Timestamp User ID Text

Friendship
User ID 1 User ID 2

Example: Facebook Relational Model with Data

Users
ID Name Email Password

111 Peter Story PeStory@clarku.edu *********

112 John Magee JMagee@clarku.edu *********

113 Li Han LHan@clarku.edu *********

Status Updates
Timestamp User ID Text

2023-11-29 10:57:01 111 The CMACD building is great!

2023-11-29 11:38:17 113 Welcome back students!

2023-11-29 11:46:29 113 Consider declaring your major!

Friendship
User ID 1 User ID 2

111 112

111 113

112 113

mailto:PeStory@clarku.edu
mailto:JMagee@clarku.edu
mailto:LHan@clarku.edu

Course Overview
• 2-3 weeks: Data modeling

• 2-3 weeks: Database queries

• 2-3 weeks: Database programming

• 1 week: Database file structures

• 1 week: Crash recovery

• 1 week: Concurrency control

• 2 weeks: NoSQL databases

Preview of Future Topics

Database Properties (ACID)
• Atomicity: All of a transaction must be completed, or none of it

• Consistency (Correctness): Don’t allow the database to enter a
corrupted state

• Isolation: Concurrently executed transactions must have the same effects
as sequentially executed transactions (since databases usually have
multiple users)

• Durability: After a transaction completes, it should persist even if the
power fails, etc.

Database Management Systems (DBMSs)

• SQLite: suitable for single-user apps (doesn’t have a server process)

• PostgreSQL: free open-source (FOSS) DB with many advanced features

• MySQL: widely deployed FOSS DB with fewer features and more quirks

• Proprietary DBs: Oracle, IBM DB2, Microsoft SQL, Microsoft Access, …

• NoSQL DBs: (typically) don’t use a relational data model, and sacrifice
ACID properties for performance (Redis, MongoDB, …)

Database Memory Hierarchy
• CPU cache and main memory are

fast, but have limited capacity

• The hard disk is slower, but has
much more capacity

• Furthermore, memory is volatile,
whereas the hard disk is non-volatile

• DMBSs use the memory hierarchy
to achieve high performance and
the ACID properties

CPU

CPU Cache

Main Memory

Hard Disk

Very Fast

Slow

Fast

Database Files

• /var/lib/postgresql/
data/postgresql.conf

• /var/lib/postgresql/
data/pg_xact/0000

• /var/lib/postgresql/
data/pg_subtrans/
0000

• /var/lib/postgresql/
data/pg_ident.conf

• /var/lib/postgresql/
data/postmaster.pid

• /var/lib/postgresql/
data/
postgresql.auto.conf

• /var/lib/postgresql/
data/pg_multixact/
offsets/0000

• /var/lib/postgresql/
data/pg_multixact/
members/0000

• /var/lib/postgresql/
data/pg_wal/
00000001000000000000
0001

• /var/lib/postgresql/
data/pg_logical/
replorigin_checkpoin
t

• /var/lib/postgresql/
data/base/1/826

• /var/lib/postgresql/
data/base/1/3599

• ...

• /var/lib/postgresql/
data/base/4/2615

• /var/lib/postgresql/
data/postmaster.opts

• /var/lib/postgresql/
data/pg_hba.conf

• /var/lib/postgresql/
data/PG_VERSION

• /var/lib/postgresql/
data/global/4176

• /var/lib/postgresql/
data/global/6302

• ...

SQLite is simple: one file, such as db.sqlite

PostgreSQL and (other multiuser databases) manage 1000s of files: 
ls /var/lib/postgresql/data

Database Indexes
• How to locate the user with ID 111?

• One approach: scan the user table, check every record, return the one with id=111.
Very slow for large tables! Other ideas?

• Keep records ordered by ID, and use a binary search. But updates will be slow.

• Use a search tree index. Keep records sorted while allowing insertions, deletions,
and updates. The B+-tree (multiway search tree) is common.

• Use a hash table index. Much faster for exact match queries, but cannot support
range queries.

• Primary and foreign keys should be indexed

Database Queries

• How to retrieve records from a database?

• Using SQL (Structured Query Language)

• Find the record for the user with ID 111: 
SELECT * 
FROM user 
WHERE user.id = 111

• Supports sorting, queries across tables, computing averages, etc.

Data Retrieval
• Your SQL query tells the database what you want. The database (usually)

retrieves the results as efficiently as possible.

• Often, several plans are considered. For example:

• Should indices be used?

• When tracing relationships across tables (joining), which table to start
with?

• The choice of plan depends on statistics collected by the database (e.g.,
table size)

Data Integrity: Transaction Processing

• Suppose John and Jane withdraw $50 and $100 from a common account: 
 
 
 
 
 

• Initial balance $300. Final balance? Depends on whether isolation is
enforced!

John: 
get balance 
if balance > $50 
balance = balance - $50 
update balance

Jane: 
get balance 
if balance > $100 
balance = balance - $100 
update balance

Data Integrity: Recovery
• Suppose we try to transfer $50 from account A to account B: 

 
 
 
 
 
 
 

• Databases can recover from crashes or power outages by rolling back an
unfinished transaction. This preserves atomicity.

get balance for A 
if balanceA > $50 
balanceA = balanceA – 50 
update balanceA in database 
get balance for B 
balanceB = balanceB + 50 
update balanceB in database

Money will be lost if these steps
aren’t completed!

If Time: Research a DBMS
• Form a group of 3-5 students

• Each student should research a different relational database. Consider researching:
SQLite, PostgreSQL, MySQL, Oracle, IBM DB2, Microsoft SQL, Microsoft Access

• For your database, search online to answer these questions:

• When was the database first released? When was it last updated?

• How widely deployed is the database (e.g., number of installs)?

• What makes this database unique?

• ~10 minutes before class ends, discuss your findings with your group

Prepare for Lab

