Lecture Notes: Probability

Preliminaries

Course Content

Review 1

Review 2

Review day for final exam. Review written assignments, quizzes, etc.

Motivation

Definitions

Complement

\[\begin{aligned} 1 &= \text{Pr}(S) & \text{ (by Axiom 2)} \\ &= \text{Pr}(A \cup \bar{A}) \\ &= \text{Pr}(A) + \text{Pr}(\bar{A}) & \text{ (by Axiom 3)} \\ 1 - \text{Pr}(A) &= \text{Pr}(\bar{A}) & \text{ (rearranging)} \\ \end{aligned}\]

Theorems (Skipping Proofs)

\[\begin{aligned} \text{Pr}(B) &= \text{Pr}(A \cup (B - A)) \\ &= \text{Pr}(A) + \text{Pr}(B - A) & \text{ (by Axiom 3)} \\ \text{Pr}(A) &= \text{Pr}(B) - \text{Pr}(B - A) & \text{ (rearranging)} \end{aligned}\] \[\begin{aligned} \text{Pr}(A_1 \cup A_2 \cup A_3) &= \text{Pr}(A_1) + \text{Pr}(A_2) + \text{Pr}(A_3) \\ &= \frac{1}{6} + \frac{2}{6} + \frac{2}{6} \\ &= \frac{5}{6} \end{aligned}\] \[\begin{aligned} \text{Pr}(A \cup B) &= \text{Pr}(A) + \text{Pr}(B) - \text{Pr}(A \cap B) \\ &= \frac{3}{6} + \frac{2}{6} - \frac{1}{6} \\ &= \frac{4}{6} \end{aligned}\]

Equally Likely Outcomes

\[\begin{aligned} \text{Pr}(A \cup B) &= \frac{\vert A \cup B \vert}{\vert S \vert} \\ &= \frac{\vert A \vert + \vert B \vert}{\vert S \vert} & \text{ (by the Sum Rule)} \\ &= \frac{\vert A \vert}{\vert S \vert} + \frac{\vert B \vert}{\vert S \vert} \\ &= \text{Pr}(A) + \text{Pr}(B) \end{aligned}\]

Birthday Problem

\[\begin{aligned} \prod_{i=0}^{n-1} \frac{365-i}{365} &= \frac{365 \cdot 364 \cdot \ldots \cdot (365 - (n - 1))}{365^n} \\ &= \frac{365!}{(365 - n)! \cdot 365^n} & \text{ (falling factorial)} \end{aligned}\]

Independent Events

Introduction to Conditional Probability (If Time)

\[\begin{aligned} \text{Pr}(A \cap B) &= \frac{1}{36} \\ \text{Pr}(B) &= \frac{27}{36} \\ \text{Pr}(A \vert B) &= \frac{\text{Pr}(A \cap B)}{\text{Pr}(B)} = \frac{1}{27} \\ \end{aligned}\] \[\begin{aligned} \text{Pr}(A \vert B) &= \frac{\text{Pr}(A \cap B)}{\text{Pr}(B)} \\ &= \frac{\text{Pr}(A) \cdot \text{Pr}(B)}{\text{Pr}(B)} & \text{ (by the definition of independence)} \\ &= \text{Pr}(A) \\ \end{aligned}\] \[\begin{aligned} \text{Pr}(A \vert B) &= \text{Pr}(A) \\ \frac{\text{Pr}(A \cap B)}{\text{Pr}(B)} &= \text{Pr}(A) & \text{ (by the definition of conditional probability)} \\ \text{Pr}(A \cap B) &= \text{Pr}(A) \cdot \text{Pr}(B) & \text{ (the definition of independence)} \\ \end{aligned}\]