Lecture Notes: Proof by Mathematical Induction

Preliminaries

Course Content

Tuesday Review

Questions:

Possible answers:

Thursday Review

Review Written Assignment 2.

Fibonacci Sequence

Summation Notation

\[\begin{aligned} n &= 0 & &\sum_{i=0}^{0-1} 2^i = 0 \\ n &= 1 & &\sum_{i=0}^{1-1} 2^i = 2^0 = 1 \\ n &= 2 & &\sum_{i=0}^{2-1} 2^i = 2^0 + 2^1 = 1 + 2 = 3 \\ n &= 3 & &\sum_{i=0}^{3-1} 2^i = 2^0 + 2^1 + 2^2 = 1 + 2 + 4 = 7 \\ n &= 4 & &\sum_{i=0}^{4-1} 2^i = 2^0 + 2^1 + 2^2 + 2^3 = 1 + 2 + 4 + 8 = 15 \\ \end{aligned}\] \[\begin{aligned} \sum_{i=0}^{4-1} 2^i &= 2^0 + 2^1 + 2^2 + 2^3 \\ &= (1 + 2 + 4) + 8 \\ &= 7 + 8 \\ &= (2^3 - 1) + 2^3 \\ &= 2(2^3) - 1 \\ &= 2^4 - 1 \\ \end{aligned}\]

Inductive Summation Proof 1

\[\begin{aligned} \sum_{i=0}^{0-1} 2^i &= 0 \\ 2^0 - 1 &= 0 \end{aligned}\] \[\begin{aligned} \sum_{i=0}^k 2^i &= \left(\sum_{i=0}^{k-1} 2^i \right) + 2^k & &\text{(break off the sum's last term)} \\ &= \left(2^k - 1\right) + 2^k & &\text{(substitute induction hypothesis)} \\ &= 2\left(2^k \right) - 1 = 2^{k+1} - 1 \\ \end{aligned}\]

Inductive Summation Proof 2

\[\begin{aligned} \sum_{i=1}^{0} i &= 0 \\ \frac{0(0+1)}{2} &= 0 \end{aligned}\] \[\begin{aligned} \sum_{i=1}^{k+1} i &= \left(\sum_{i=1}^{k} i \right) + (k+1) & &\text{(break off the sum's last term)} \\ &= \left(\frac{k(k+1)}{2}\right) + (k+1) & &\text{(substitute induction hypothesis)} \\ &= \frac{k(k+1)}{2} + \frac{2(k+1)}{2} & &\text{(common denominator)} \\ &= \frac{k^2 + 3k + 2}{2} & &\text{(simplify)} \\ &= \frac{(k+1)(k+2)}{2} & &\text{(factor)} \\ \end{aligned}\]

Product Notation

Inductive Product Proof

\[\begin{aligned} \left(1 + \frac{1}{1} \right) \left(1 + \frac{1}{2} \right) \left(1 + \frac{1}{3} \right) &= 4 \\ \frac{1+1}{1} \cdot \frac{2+1}{2} \cdot \frac{3+1}{3} &= 4 \\ \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} &= 4 \end{aligned}\] \[\begin{aligned} \prod_{i=1}^{1} \left( 1 + \frac{1}{i} \right) = 1 + \frac{1}{1} &= 2 \\ 1 + 1 &= 2 \end{aligned}\] \[\begin{aligned} \prod_{i=1}^{k+1} \left( 1 + \frac{1}{i} \right) &= \left( \prod_{i=1}^{k} \left( 1 + \frac{1}{i} \right) \right) \left( 1 + \frac{1}{k+1} \right) & &\text{(break off the last factor)} \\ &= (k+1) \left( 1 + \frac{1}{k+1} \right) & &\text{(substitute induction hypothesis)} \\ &= (k+1) + \frac{k+1}{k+1} & &\text{(distributing)} \\ &= (k+1) + 1 \\ \end{aligned}\]

The Thue Sequence (Needed for Lab)

\[\begin{aligned} T_0 &= 0 \\ T_1 &= 01 \\ T_2 &= 0110 \\ \end{aligned}\]

Thue Sequence Induction Proof 1

Thue Sequence Induction Proof 2

Thue Sequence Induction Proof 3

Pigeonhole Principle Proof