Processing math: 51%

Lecture Notes: Proof by Mathematical Induction

Preliminaries

Course Content

Tuesday Review

Questions:

Possible answers:

Thursday Review

Review Written Assignment 2.

Fibonacci Sequence

Summation Notation

n=001i=02i=0n=111i=02i=20=1n=221i=02i=20+21=1+2=3n=331i=02i=20+21+22=1+2+4=7n=441i=02i=20+21+22+23=1+2+4+8=15 n=441i=02i=20+21+22+23=15=241=(1+2+4)+8=7+8=(231)+23=2(23)1=241

Inductive Summation Proof 1

01i=02i=0201=0 ki=02i=(k1i=02i)+2k(break off the sum's last term)=(2k1)+2k(substitute induction hypothesis)=2(2k)1=2k+11

Inductive Summation Proof 2

0i=1i=00(0+1)2=0 k+1i=1i=(ki=1i)+(k+1)(break off the sum's last term)=(k(k+1)2)+(k+1)(substitute induction hypothesis)=k(k+1)2+2(k+1)2(common denominator)=(k+1)(k+2)2(factoring)

Product Notation

Inductive Product Proof

(1+11)(1+12)(1+13)=41+112+123+13=4213243=4 1i=1(1+1i)=1+11=21+1=2 k+1i=1(1+1i)=(ki=1(1+1i))(1+1k+1)(break off the last factor)=(k+1)(1+1k+1)(substitute induction hypothesis)=(k+1)+k+1k+1(distributing)=(k+1)+1

The Thue Sequence (Needed for Lab)

T0=0T1=01T2=0110

Thue Sequence Induction Proof 1

Thue Sequence Induction Proof 2

Thue Sequence Induction Proof 3

Pigeonhole Principle Proof