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Objectives 

• Understand data types and type information 

• Understand simple types 

• Understand type constructors 

• Be able to distinguish type nomenclature in sample 

languages 

• Understand type equivalence 
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Objectives (cont’d.) 

• Understand type checking 

• Understand type conversion 

• Understand polymorphic type checking 

• Understand explicit polymorphism 

• Perform type checking in TinyAda 
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Introduction 

• Every program uses data, either explicitly or 

implicitly, to arrive at a result 

• Data type: the basic concept underlying the 

representation of data in programming languages 

• Data in its most primitive form is simply a collection 

of bits 

– This does not provide the kinds of abstraction 

necessary for large programs 

• Programming languages include a set of simple 

data entities and mechanisms for constructing new 

ones 
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Introduction (cont’d.) 

• Machine dependencies are often part of the 

implementation of these abstractions 

• Finitude of data: 

– In mathematics, integer set is infinite 

– In hardware, there is always a largest and smallest 

integer 

• Much disagreement among language designers on 

the extent to which type information should be 

made explicit and used to verify program 

correctness 
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Introduction (cont’d.) 

• Reasons to have some form of static type-

checking: 

– Execution efficiency: allows compilers to allocate 

memory efficiently 

– Translation efficiency: static types allow the 

compiler to reduce the amount of code to be 

compiled 

– Writability: allows many common programming 

errors to be caught early 

– Security and reliability: reduces the number of 

execution errors 
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Introduction (cont’d.) 

• Reasons to have some form of static type-checking 

(cont’d.): 

– Readability: explicit types help to document data 

design 

– Remove ambiguities: explicit types can be used to 

resolve overloading 

– Design tool: explicit types highlight design errors 

and show up as translation-time errors 

– Interface consistency and correctness: explicit 

data types help in verification of large programs 

• Data type: the basic abstraction mechanism 
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Data Types and Type Information 

• Program data can be classified according to their 

types 

• Type name represents the possible values that a 

variable of that type can hold and the way those 

values are represented internally 

• Data type (definition 1): a set of values 

–                    means the same as  

• Data type (definition 2): a set of values, together 

with a set of operations on that values having 

certain properties 

– A data type is actually a mathematical algebra 
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Data Types and Type Information 

(cont’d.) 
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• Type checking: the process a translator goes 

through to determine whether type information in a 

program is consistent 

• Type inference: the process of attaching types to 

expressions 

• Type constructors: mechanisms used with a group 

of basic types to construct more complex types 

– Example: Array takes a base type and a size or 

range indication and constructs a new data type 

• User-defined types: types created using type 

constructors 



Data Types and Type Information 

(cont’d.) 

• Type declaration (or type definition): used to 

associate a name with a new data type 

• Anonymous type: a type with no name 

– Can use typedef in C to assign a name 

• Type equivalence: rules for determining if two 

types are the same 

• Type system: methods for constructing types, the 

type equivalence algorithm, type inference rules, 

and type correctness rules 
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Data Types and Type Information 

(cont’d.) 

• Strongly typed: a language that specifies a 

statically applied type system that guarantees all 

data-corrupting errors will be detected at the 

earliest possible point 

– Errors are detected at translation time, with a few 

exceptions (such as array subscript bounds) 

• Unsafe programs: programs with data-corrupting 

errors 

• Legal programs: proper subset of safe programs; 

those programs accepted by a translator 
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Data Types and Type Information 

(cont’d.) 

• Weakly-typed language: one that has loopholes 

that may allow unsafe programs 

• Untyped (or dynamically typed) languages: 

languages without static type systems 

– All safety checking is performed at execution time 

• Polymorphism: allows names to have multiple 

types while still permitting static type checking 
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Simple Types  

• Predefined types: those types supplied with a 

language, from which all other types are 

constructed 

– Generally specified using either keywords or 

predefined identifiers 

– May include some variations on basic types, such as 

for numeric types 

• Simple types: have no other structure than their 

inherent arithmetic or sequential structure 

– Usually includes predefined types 

– Includes enumerated types and subrange types 
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Simple Types (cont’d.) 

• Enumerated types: sets whose elements are 

named and listed explicitly 

– Example: In C: 

– Are ordered in most languages: order in which the 

values are listed is important  

– Most languages include a predefined successor 

and predecessor operation for enumerated types  

– No assumptions are made about how the listed 

values are represented internally 
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Simple Types (cont’d.) 
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Simple Types (cont’d.) 
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Simple Types (cont’d.) 

• Subrange types: contiguous subsets of simple 

types specified by giving least and greatest 

elements 

– Example:  

• Ordinal types: types that exhibit a discrete order 

on the set of values 

– All numeric integer types are ordinal types 

– Always have comparison operators 

– Often have successor and predecessor operations 

• Real numbers are not ordinal; they have no 

successor and predecessor operations 
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Simple Types (cont’d.) 

• Allocation schemes are usually dependent on the 

underlying hardware for efficiency 

• IEEE 754 standard tries to define standard 

representations 
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Type Constructors 

• Since data types are sets, set operations can be 

used to construct new types from existing ones 

• Set operations that can be used include Cartesian 

product, union, powerset, function set, and subset 

– These set operations are called type constructors 

• Example: subrange type is formed using subset 

construction 

• There are type constructors that do not correspond 

to mathematical set constructions, and some set 

operations that do not correspond to type 

constructors 
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Cartesian Product 

• Given two sets U and V, the Cartesian product (or 

cross product) consists of all ordered pairs of 
elements from U and V: 

 

• In many languages, the Cartesian product type 

constructor is available as the record or structure 

construction 
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Cartesian Product (cont’d.) 

• Example: In C, this struct declaration constructs 

the Cartesian product of type  
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Cartesian Product (cont’d.) 
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• Difference between a Cartesian product and a 

record structure:  

– In a record structure, components have names 

– In a Cartesian product, they are referred to by 

position 

• Most languages consider component names to be 

part of the type defined by a record structure 

• Tuple: a purer form of record structure in ML that is 

essentially identical to the Cartesian product 



Cartesian Product (cont’d.) 

• Class: a data type found in object-oriented 

languages 

– Includes member functions or methods 

– Closer to the second definition of data type, which 

includes functions that act on the data 
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Union 

• Union of two types: formed by taking the set 

theoretic union of the sets of their values 

• Two varieties 

– Discriminated unions: a tag or discriminator is 

added to the union to distinguish the type of its 

elements 

– Undiscriminated unions: lack the tags; assumptions 

must be made about the type of any value 

• A language with undiscriminated unions has an 

unsafe type system 
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Union (cont’d.) 
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• In C and C++, the union type constructor creates 

undiscriminated unions 

• Example: 

 

 

 

 

– If x is a variable of type union IntOrReal, x.i is 

interpreted as an int, and x.r is interpreted as a 
double 

 



Union (cont’d.) 
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• Ada has a completely safe union mechanism called 

a variant record 



Union (cont’d.) 
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• In ML, declare an enumeration with the vertical bar 

for “or”: 

 

• Then use pattern matching: 



Union (cont’d.) 
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• The tags IsInt and IsReal in ML are called data 

constructors, since they construct data of each 

kind within a union 

• Unions are useful in reducing memory allocation 

requirements for structures when different data 

items are not needed simultaneously 

• Unions are not needed in object-oriented 

languages 

– Use inheritance to represent different non-

overlapping data requirements 



Subset 
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• A subset in math is specified by giving a rule to 

distinguish its elements 

• Similar rules can be given in programming 

languages to establish new types as subsets of 

known types 

• Ada has a subtype mechanism: 

 

• Variant parts of records can be fixed using subtype 

 



Subset (cont’d.) 

• Such subset types inherit operations from their 

parent types 

– Most languages do not allow the programmer to 

specify which operations are inherited and which are 

not 

• Inheritance in object-oriented languages can also 

be viewed as a subtype mechanism 

– With a great deal more control over which operations 

are inherited 
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Arrays and Functions  
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• The set of all functions f:UV can give rise to a 

new type in two ways: 

– Array type 

– Function type 

• If U is an ordinal type, the function f can be thought 

of as an array with index type U and component 

type V 

– If i is in U, then f(i) is the ith component of the 

array 

– Whole function can be represented by the sequence 
or tuples of its values (f(low),…,f(high)) 



Arrays and Functions (cont’d.) 

• Arrays are sometimes called sequence types 

• Typically, array types can be defined with or 

without sizes 

– To define a variable of an array type, usually 

necessary to specify size at translation time since 

arrays are normally allocated statically 

• In C, the size of an array must be a literal, not a 

computed constant 

• Cannot dynamically define an array size in C or 

C++ 
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Arrays and Functions (cont’d.) 
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• C allows arrays without specified size to be 

parameters to functions (they are essentially 

pointers), but the size must be supplied 

– Size of the array is not part of the array in C or C++ 



Arrays and Functions (cont’d.) 

• In Java, arrays are always dynamically (heap) 

allocated, and the size can be dynamically 

specified (but cannot change) 

– Size is stored when an array is allocated in its 

length property 
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Arrays and Functions (cont’d.) 

• Ada allows array types declared without a size, 

called unconstrained arrays, but requires a size 

when array variables are declared 

• Multidimensional arrays are also possible 

• Arrays are perhaps the most widely used type 

constructor 

• Implementation is extremely efficient  

– Space is allocated sequentially in memory 

– Indexing is performed by an offset calculation from 

the starting address 
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Arrays and Functions (cont’d.) 

• For multidimensional arrays, must decide which 

index to use first in the allocation scheme 

– Row-major form: all values of the first row are 

allocated first, then all values of the second row, etc. 

– Column-major form: all values of the first column 

are allocated first, then all values of the second 

column, etc. 

• Functional languages usually do not supply an 

array type; most use the list in place of an array 

– Scheme has a vector type 
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Arrays and Functions (cont’d.) 

• General function and procedure types can be 

created in some languages 

• Example: in C, define a function type from integers 

to integers: 

– Use this type for variables or parameters: 
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Arrays and Functions (cont’d.) 

• In ML, you can define a function type: 

 

– Use it in a similar fashion: 
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Pointers and Recursive Types 
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• Reference or pointer constructor: constructs the 

set of all addresses that refer to a specified type 

– Does not correspond to a set operation 

• Example in C: 

– Constructs the type of all addresses where integers 

are stored 

• Pointers are implicit in languages that perform 

automatic memory management 

– In Java, all objects are implicitly pointers that are 
allocated explicitly (using the new operator) but 

deallocated automatically by garbage collection 



Pointers and Recursive Types (cont’d.) 

• Reference: address of an object under control of 

the system that cannot be used as a value or 

operated on in any way (except copying) 

• Pointer: can be used as a value and manipulated 

by the programming 

• References in C++ are created by a postfix & 

operator 

• Recursive type: a type that uses itself in its 

declaration 
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Pointers and Recursive Types (cont’d.) 

• Recursive types are important in data structures 

and algorithms 

– Represent data whose size and structure is not 

known in advance and may change as computation 

proceeds 

– Examples: lists and binary trees 

• Consider this C-like declaration of lists of 

characters: 
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Pointers and Recursive Types (cont’d.) 

• C requires that each data type have a fixed 

maximum size determined at translation time 

– Must use pointer to allow manual dynamic allocation 

to overcome this problem 

 

 

 

 

– Each individual element in a CharListNode now has 

a fixed size, and they can be strung together to form 

a list of arbitrary size 
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Data Types and the Environment 

• Pointer types, recursive types, and general function 

types require space to be allocated dynamically 

– Require fully dynamic environments with automatic 

allocation and deallocation (garbage collection) 

– Found in the functional languages and the more 

dynamic object-oriented languages 

• More traditional languages (C++ and Ada) restrict 

these types so that a heap (a dynamic space under 

programming control) is sufficient 

• Environment issues will be discussed in full in 

Chapter 10 
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Type Nomenclature in Sample 

Languages 
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• Various language definitions use different and 

confusing terminology to define similar things 

• This section gives a brief description of the 

differences among three languages: C, Java, and 

Ada 

 



C 

• Simple data types are called basic types, 

including: 

– void type 

– Numeric types: 

• Integral types, which are ordinal (12 possible kinds) 

• Floating types (3 possible kinds) 

• Integral types can be signed or unsigned 

• Derived types: constructed using type 

constructors 
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Java 

• Simple types are called primitive types, including: 

– Boolean (not numeric or ordinal) 

– Numeric, including: 

• Integral (ordinal) 

• Floating point 

• Reference types: constructed using type 

constructors 

– Array 

– Class  

– Interface  
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Ada 

• Ada has a rich set of types 

– Simple types are called scalar types 

– Ordinal types are called discrete types 

– Numeric types include real and integer types 

– Pointer types are called access types 

– Array and record types are called composite types 
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Ada (cont’d.) 

Programming Languages, Third Edition 51 



Type Equivalence 
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• Type equivalence: when are two types the same? 

• Can compare the sets of values as sets 

– Are the same if they contain the same values 

• Structural equivalence: two data types are the 

same if they have the same structure 

– Built in the same way using the same type 

constructors from the same simple types 

– This is one of the principal forms of type equivalence 

in programming languages 



Type Equivalence (cont’d.) 
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• Example:  

– Rec1 and Rec2 are 

structurally equivalent  

– Rec1 and Rec3 are not 

structurally equivalent (char 

and int fields are reversed) 

 



Type Equivalence (cont’d.) 
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• Structural equivalence is relatively easy to 

implement (except for recursive types) 

– Provides all the information needed to perform error 

checking and storage allocation 

• To check structural equivalence, a translator may 

represent types as trees and check equivalence 

recursively on subtrees 

• Questions still arise over how much information is 

included in a type under the application of a type 

constructor 



Type Equivalence (cont’d.) 

• Example: are A1 and A2 structurally equivalent? 

 

 

– Yes, if size of the index set is not part of an array 

type 

– Otherwise, no 

• Similar question arises regarding member names 

of structures 
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Type Equivalence (cont’d.) 
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• Example: Are these two structures structurally 

equivalent? 

 

 

 

– If structures are considered to be just Cartesian 

products, then yes 

– They are typically not considered equivalent, 

because variables of different structures would have 

to use different names to access member data 

 

 



Type Equivalence (cont’d.) 

• Type names in declarations may or may not be 

given explicitly 

– In C, variable declarations can use anonymous 

types 

– Names can also be given right in structs and 

unions, or by using a typedef 

• Structural equivalence when type names are 

present can be done by simply replacing each 

name by its associated type expression in its 

declaration (except for recursive types) 
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Type Equivalence (cont’d.) 

• Example: in C code 

– Variable a has two names: 

struct RecA and RecA 

(given by the typedef) 

– Variable b has only the 

name RecB (the struct 

name was left blank) 

– Variable c has no type 

name at all (only an internal 

name not usable by the 

programmer) 
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Type Equivalence (cont’d.) 

• Structural equivalence by replacing names with 

types can lead to infinite loops in a type checker 

when applied to recursive types 
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Type Equivalence (cont’d.) 
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• Name equivalence: two types are the same only if 

they have the same name 

– Easier to implement than structural equivalence, as 

long as every type has an explicit name 

– Two types are equivalent only if they are the same 

name 

– Two variables are type equivalent only if their 

declarations use exactly the same type name 



Type Equivalence (cont’d.) 

• Example: in C code: 

– a, b, c, and d are structurally 

equivalent 

– a and c are name equivalent, 

and not name equivalent to b 

or d 

– b and d are not name 

equivalent to any other 

variable 
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Type Equivalence (cont’d.) 
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• Ada implements a very pure form of name 

equivalence 

– Requires type names in variable and function 

declarations in virtually all cases 

• C uses a form of type equivalence that falls 

between name and structural equivalence: 

– Name equivalence for structs and unions 

– Structural equivalence for everything else 

• Pascal is similar to C, except that almost all type 

constructors lead to new, inequivalent types 



Type Equivalence (cont’d.) 

• Java’s approach is simple: 

– It has no typedefs 

– class and interface declarations implicitly create 

new type names, and name equivalence is used for 

these types 

– Arrays use structural equivalence, with special rules 

for establishing base type equivalence 
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Type Checking 

• Type checking: the process by which a translator 

verifies that all constructs are consistent 

– Applies a type equivalence algorithm to expressions 

and statements 

– May vary the use of the type equivalence algorithm 

to suit the context 

• Two types of type checking: 

– Dynamic: type information is maintained and 

checked at runtime 

– Static: types are determined from the text of the 

program and checked by the translator 
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Type Checking (cont’d.) 

• In a strongly typed language, all type errors must 

be caught before runtime 

– These languages must be statically typed 

– Type errors are reported as compilation error 

messages that prevent execution 

• A language definition may not specify whether 

dynamic or static typing is used 
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Type Checking (cont’d.) 

• Example1:  

– C compilers apply static type checking during 

translation, but C is not strongly typed since many 

inconsistencies do not cause compilation errors 

– C++ adds strong type checking, but mainly in the 

form of compiler warnings rather than errors, which 

do not prevent execution 
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Type Checking (cont’d.) 

• Example 2: 

– Scheme is a dynamically typed language, but types 

are rigorously checked 

– Type errors cause program termination 

– No types in declarations and no explicit type names 

– Variables have no predeclared types, but take on the 

type of the value they possess 
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Type Checking (cont’d.) 

• Example 3: 

– Ada is a strongly typed language 

– All type errors cause compilation error messages 

– Certain errors, like range errors in array subscripting, 

cannot be caught prior to execution 

– Such errors cause exceptions that will cause 

program termination if not handled by the program 
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Type Checking (cont’d.) 

• Type inference: types of expressions are inferred 

from the types of their subexpressions 

– Is an essential part of type checking 

• Type-checking rules and type inference rules are 

often intermingled 

– They also have a close interaction with the type 

equivalence algorithm 

• Type inference and correctness rules are one of 

the most complex parts of the semantics of a 

language 
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Type Compatibility 
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• Two different types that may be considered correct 

when combined in certain ways are called compatible 

– In Ada, any two subranges of the same base type 

are compatible 

– In C and Java, all numeric types are compatible (and 

conversions are performed) 

• Assignment compatibility: the left and right sides of 

an assignment statement are compatible when they are 

the same type 

• Ignores that the left side must be an l-value and the 

right side must be an r-value 

 



Type Compatibility (cont’d.) 

• Assignment compatibility can include cases where 

both sides do not have the same type 

• In Java, x=e is legal when e is a numeric type 

whose value can be converted to the type of x 

without loss of information 
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Implicit Types 

• Implicit types: types that are not explicitly given in 

a declaration 

– The type must be inferred by the translator, either 

from context information or from standard rules 

• In C, variables are implicitly integers if no type is 

given, and functions implicitly return an integer 

value if no return type is given 

• In Pascal, named constants are implicitly typed by 

the literals they represent 

• Literals are the major example of implicitly typed 

entities 
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Overlapping Types  

and Multiply-Typed Values 

• Two types may overlap, with values in common 

• Although preferable for types to be disjoint, this 

would eliminate the ability to create subtypes 

through inheritance in object-oriented languages 

• In C, types like unsigned int and int overlap 

• In C, the literal 0 is a value for every integral type, a 

value of every pointer type, and represents the null 

pointer 

• In Java, the literal value null is a value of every 

reference type 
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Shared Operations  
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• Each type is associated, usually implicitly, with a 

set of operations 

• Operations may be shared among several types or 

have the same name as other operations that may 

be different 

• Example:  + operator can be real addition, integer 

addition, or set union 

• Overloaded operation: the same name is used for 

different operations 

• Translator must decide which operation is meant  

based on the types of the operands 



Type Conversion 

• Type conversion: converting from one type to 

another  

– Can be built into the type system to happen 

automatically 

• Implicit conversion (or coercion): inserted by the 

translator 

• Widening conversion: target data type can hold 

all of the converted data without loss of data 

• Narrowing conversion: conversion may involve a 

loss of data 
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Type Conversion (cont’d.) 

• Implicit conversion: 

– Can weaken type checking so that errors may not be 

caught 

– Can cause unexpected behavior if the conversion is 

done in a different way than the programmer expects 

• Explicit conversion (or cast): conversion 

directives are written into the code 

– Conversions are documented in the code 

– Less likelihood of unexpected behavior 

– Makes it easier for the translator to resolve 

overloading  
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Type Conversion (cont’d.) 

• Example In C++: 

 

 

 

– Ambiguous, because of the possible implicit 
conversions from int to double on either first or 

second parameter 

• Java only permits widening implicit conversions for 

arithmetic types 

• C++ emits warning messages for narrowing 

Programming Languages, Third Edition 77 



Type Conversion (cont’d.) 

• Explicit casts need to be somewhat restricted 

– Often to simple types, or just arithmetic types 

• If casts are permitted for structured types, they 

must have identical sizes in memory 

– Allows translation to reinterpret the memory as a 

different type 

• Example: in C, malloc and free functions are 

declared using a generic pointer or anonymous 
pointer type void* 

• Object-oriented languages allow conversions from 

subtypes to supertypes and back in some cases 
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Type Conversion (cont’d.) 

• Alternative to casts is to use predefined or library 

functions to perform conversions 

– Ada uses attribute functions to allow conversions 

– Java contains functions like toString to convert 

from int to String and parseInt to convert from 

String to int 

• Undiscriminated unions can hold values of different 

types 

– With no discriminant or tag, a translator cannot 

distinguish values of one type from another 
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Polymorphic Type Checking 

• Most statically typed languages required that 

explicit type information be given for all names in 

declarations 

• It is possible to determine types of names without 

explicit declaration: 

– Can collect information on the uses of a name and 

infer the type from the set of all uses 

– Can declare a type error because some of the uses 

are incompatible with others 

• This type inference and type checking is called 

Hindley-Milner type checking 
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Polymorphic Type Checking (cont’d.) 
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• Example in C code: 

– a must be declared as an array of integers, and i as 

an integer, giving an integer result 

• Type checker starts out with this tree: 



Polymorphic Type Checking (cont’d.) 

• Types of the names (leaf nodes) are filled in from 

declarations 
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Polymorphic Type Checking (cont’d.) 

• Type checker now 

checks the subscript 
node (labeled []) 

– Left operand must be 

an array 

– Right operand must be 
an int 

– Inferred type of the 

subscript node is the 

component type of the 
array - int 
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Polymorphic Type Checking (cont’d.) 

• + node type is checked 

– Both operands must 

have the same type 

– This type must have a 
+ operation 

– Result is the type of 
the operands - int 
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Polymorphic Type Checking (cont’d.) 
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• Example: in C code: 

 

– What if the 
declarations of a 

and i were missing? 

• Type checker would 

first assign type 

variables to all names 

that do not yet have 

types 



Polymorphic Type Checking (cont’d.) 

• Type checker now 

checks the subscript 

node 

– Infers that a must 

be an array  

– Infers that I must 

an int 

– Replaces  with 
int in the entire 

tree 
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Polymorphic Type Checking (cont’d.) 

• Type checker now 

concludes that the 

subscript node is type 

correct and has the 

type  
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Polymorphic Type Checking (cont’d.) 

• + node type is 

checked 

– Concludes that  
must be type int 

– Replaces   
everywhere by int 

• This is the basic form 

of operation of 

Hindley-Milner type 

checking 
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Polymorphic Type Checking (cont’d.) 

• Once a type variable is replaced by an actual type, 

all instances of that variable name must be 

updated with the new type 

– Called instantiation of type variables 

• Unification: when type expressions for variables 

can change for type checking to succeed 

– Example array of  and array of : we need to have 
 == , so  must be changed to  everywhere it 

occurs 

– Is a kind of pattern matching 
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Polymorphic Type Checking (cont’d.) 

• Unification involves three cases: 

– Any type variable unifies with any type expression 

(and is instantiated to that expression) 

– Any two type constants unify only if they are the 

same type 

– Any two type constructions (such as array or struct) 

unify only if they are applications of the same type 

constructor and all of their component types also 

recursively unify 
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Polymorphic Type Checking (cont’d.) 

• Hindley-Milner type checking advantages: 

– Simplifies the amount of type information the 

programmer must write 

– Allows types to remain as general as possible while 

still being strongly checked for consistency 

• Hindley-Milner type checking implicitly implements 

polymorphic type checking 

• Array of  is a set of infinitely many types, called 

parametric polymorphism 

– Hindley-Milner uses implicit parametric 

polymorphism 
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Polymorphic Type Checking (cont’d.) 

• Sometimes called ad hoc polymorphism to 

distinguish it from overloading 

• Pure polymorphism (or subtype polymorphism): 

when objects that share a common ancestor also 

either share or redefine operators that exist for the 

ancestor 

• Monomorphic: describes a language that exhibits 

no polymorphism 
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Polymorphic Type Checking (cont’d.) 

• Polymorphic functions are real goal of parametric 

polymorphism and Hindley-Milner type checking 

• Example: 

 

 

– Body is the same if int is replaced by any other 

arithmetic type 

– Could add a new parameter representing the >  
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Polymorphic Type Checking (cont’d.) 

• In C-like syntax: 

 

 

• In ML legal syntax, this becomes:   
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Polymorphic Type Checking (cont’d.) 
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Polymorphic Type Checking (cont’d.) 

Programming Languages, Third Edition 96 



Polymorphic Type Checking (cont’d.) 
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Polymorphic Type Checking (cont’d.) 

• Can now use max in any situation where the actual 

types unify 

• If we provide these definitions in ML: 

 

 

– We can call max function as follows: 
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Polymorphic Type Checking (cont’d.) 

• Most general type possible for max function, called 

its principal type, is: 

• Each call to max specializes this principle type to 

a monomorphic type 

– May also implicitly specialize the types of the 

parameters 

• Any polymorphically typed object passed into a 

function as a parameter must have a fixed 

specialization for the duration of the function 

– This restriction is called let-bound polymorphism 
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Polymorphic Type Checking (cont’d.) 

• Two problems complicate Hindley-Milner type 

checking: 

– Let-bound polymorphism 

– The occur-check problem 

• Polymorphic types also have translation issues 

– Copying values of arbitrary type without knowing the 

type means the translator cannot determine the size 

of the values 

– May cause code bloat 
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Explicit Polymorphism 

• Explicit parametric polymorphism: to define a 

polymorphic data type, the type variable must be 

written explicitly 

• Example: stack declaration in ML code 

 

 

– Values of type Stack can be written as: 
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Explicit Polymorphism (cont’d.) 

• Explicitly parameterized polymorphic data types 

are nothing more than a mechanism for creating 

user-defined type constructors 

– A type constructor is a function from types to types 

• Construction can be expressed directly in C as a 
typedef 

• In ML, this is done with the type construct 

• C++ is a language with explicit parametric 

polymorphism, but without the associated implicit 

Hindley-Milner type checking 

– Uses the template mechanism 
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Explicit Polymorphism (cont’d.) 
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Explicit Polymorphism (cont’d.) 
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• Implicitly constrained parametric 

polymorphism: implicitly applies a constraint to 

the type parameter 

• Explicitly constrained parametric 

polymorphism: makes explicit what types of 

parameters are required 

 



Case Study: Type Checking in 

TinyAda 

• Goals:  

– Check identifiers to ensure that they are declared 

before they are used 

– Check that identifiers are not declared more than 

once in the same block 

– Record the role of an identifier as a constant, 

variable, procedure, or type name 
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Type Compatibility, Type Equivalence, 

and Type Descriptors 

• TinyAda parser must: 

– Check that the type of an operand is appropriate for 

the operation being performed 

– Check that the name on the left side of an 

assignment statement is type-compatible with the 

expression on the right side 

– Restrict the types of certain elements of 

declarations, such as the index types of an array 
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Type Compatibility, Type Equivalence, 

and Type Descriptors (cont’d.) 

• TinyAda uses a loose form of name equivalence to 

determine type compatibility 

– For arrays and enumerations, two identifiers are 

type-compatible if and only if they were declared 

using the same type name in their declarations 

– For built-in types INTEGER, CHAR, and BOOLEAN and 

their programmer-defined subrange types, two 

identifiers are type-compatible if and only if their 

supertypes are name-equivalent 
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Type Compatibility, Type Equivalence, 

and Type Descriptors (cont’d.) 

• Type descriptor: primary data structure used to 

represent type attributes 

• Type descriptor is entered into the symbol table 

when the type name is introduced 

– At startup for built-in type names INTEGER, CHAR, 

and BOOLEAN  

– Whenever new type declarations are encountered 
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The Design and Use  

of Type Descriptor Classes 

• Type descriptor is like a variant record, containing 

different attributes depending on the category of 

the data type being described 

• Each descriptor includes a type form field, with 
possible values of ARRAY, ENUM, SUBRANGE, and NONE, 

to identify the category of the data type 

• Array type descriptor includes attributes for index 

types and element types (these attributes are also 

type descriptors) 

• Enumeration type descriptor includes a list of 

symbol entries for the enumerate constant names 
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The Design and Use  

of Type Descriptor Classes (cont’d.) 

• Type descriptors for subrange types (including 
INTEGER, CHAR, and BOOLEAN) include values of 

lower and upper bound and a type descriptor for 

the supertype 

• There is no variant record structure in Java 

– Can model it with a TypeDescriptor class and 

three subclasses: ArrayDescriptor, 

SubrangeDescriptor, and EnumDescriptor 
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Entering Type Information  

in Declarations 

• Type information must be entered wherever 

identifiers are declared in a source program 

• Type information comes from type identifiers or 

from a type definition 

– Type identifiers: type descriptor is available in the 

identifier’s symbol entry 

– Type definition: a new type might be created 
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Checking Types in Operands  

in Expressions 

• The rules for TinyAda expressions give hints as to 

how their types should be checked 

• The type of every operand must be checked, and 

the correct type descriptor must be returned 
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Processing Names: Indexed 

Component References and 

Procedure Calls 
• Syntax for TinyAda indexed component references 

and procedure calls is the same if the procedure 

expects at least one parameter 

– Must distinguish between these two types of 

phrases, based on the role of the leading identifier 
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Completing Static Semantic Analysis  

• Two other types of semantic restrictions can be 

imposed during parsing: 

– Checking of parameter modes 

– Check that only static expressions are used in 

number declarations and range type definitions 

• Tanya has three parameter modes: 

– Input only: with the keyword in 

– Output only: with the keyword out 

– Input/output: with the keywords in out 
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