
Programming Languages

Third Edition

Chapter 8

Data Types

Objectives

• Understand data types and type information

• Understand simple types

• Understand type constructors

• Be able to distinguish type nomenclature in sample

languages

• Understand type equivalence

Programming Languages, Third Edition 2

Objectives (cont’d.)

• Understand type checking

• Understand type conversion

• Understand polymorphic type checking

• Understand explicit polymorphism

• Perform type checking in TinyAda

Programming Languages, Third Edition 3

Introduction

• Every program uses data, either explicitly or

implicitly, to arrive at a result

• Data type: the basic concept underlying the

representation of data in programming languages

• Data in its most primitive form is simply a collection

of bits

– This does not provide the kinds of abstraction

necessary for large programs

• Programming languages include a set of simple

data entities and mechanisms for constructing new

ones
Programming Languages, Third Edition 4

Introduction (cont’d.)

• Machine dependencies are often part of the

implementation of these abstractions

• Finitude of data:

– In mathematics, integer set is infinite

– In hardware, there is always a largest and smallest

integer

• Much disagreement among language designers on

the extent to which type information should be

made explicit and used to verify program

correctness

Programming Languages, Third Edition 5

Introduction (cont’d.)

• Reasons to have some form of static type-

checking:

– Execution efficiency: allows compilers to allocate

memory efficiently

– Translation efficiency: static types allow the

compiler to reduce the amount of code to be

compiled

– Writability: allows many common programming

errors to be caught early

– Security and reliability: reduces the number of

execution errors

 Programming Languages, Third Edition 6

Introduction (cont’d.)

• Reasons to have some form of static type-checking

(cont’d.):

– Readability: explicit types help to document data

design

– Remove ambiguities: explicit types can be used to

resolve overloading

– Design tool: explicit types highlight design errors

and show up as translation-time errors

– Interface consistency and correctness: explicit

data types help in verification of large programs

• Data type: the basic abstraction mechanism

 Programming Languages, Third Edition 7

Data Types and Type Information

• Program data can be classified according to their

types

• Type name represents the possible values that a

variable of that type can hold and the way those

values are represented internally

• Data type (definition 1): a set of values

– means the same as

• Data type (definition 2): a set of values, together

with a set of operations on that values having

certain properties

– A data type is actually a mathematical algebra
Programming Languages, Third Edition 8

Data Types and Type Information

(cont’d.)

Programming Languages, Third Edition 9

• Type checking: the process a translator goes

through to determine whether type information in a

program is consistent

• Type inference: the process of attaching types to

expressions

• Type constructors: mechanisms used with a group

of basic types to construct more complex types

– Example: Array takes a base type and a size or

range indication and constructs a new data type

• User-defined types: types created using type

constructors

Data Types and Type Information

(cont’d.)

• Type declaration (or type definition): used to

associate a name with a new data type

• Anonymous type: a type with no name

– Can use typedef in C to assign a name

• Type equivalence: rules for determining if two

types are the same

• Type system: methods for constructing types, the

type equivalence algorithm, type inference rules,

and type correctness rules

Programming Languages, Third Edition 10

Data Types and Type Information

(cont’d.)

• Strongly typed: a language that specifies a

statically applied type system that guarantees all

data-corrupting errors will be detected at the

earliest possible point

– Errors are detected at translation time, with a few

exceptions (such as array subscript bounds)

• Unsafe programs: programs with data-corrupting

errors

• Legal programs: proper subset of safe programs;

those programs accepted by a translator

Programming Languages, Third Edition 11

Data Types and Type Information

(cont’d.)

• Weakly-typed language: one that has loopholes

that may allow unsafe programs

• Untyped (or dynamically typed) languages:

languages without static type systems

– All safety checking is performed at execution time

• Polymorphism: allows names to have multiple

types while still permitting static type checking

Programming Languages, Third Edition 12

Simple Types

• Predefined types: those types supplied with a

language, from which all other types are

constructed

– Generally specified using either keywords or

predefined identifiers

– May include some variations on basic types, such as

for numeric types

• Simple types: have no other structure than their

inherent arithmetic or sequential structure

– Usually includes predefined types

– Includes enumerated types and subrange types
Programming Languages, Third Edition 13

Simple Types (cont’d.)

• Enumerated types: sets whose elements are

named and listed explicitly

– Example: In C:

– Are ordered in most languages: order in which the

values are listed is important

– Most languages include a predefined successor

and predecessor operation for enumerated types

– No assumptions are made about how the listed

values are represented internally

Programming Languages, Third Edition 14

Simple Types (cont’d.)

Programming Languages, Third Edition 15

Simple Types (cont’d.)

Programming Languages, Third Edition 16

Simple Types (cont’d.)

• Subrange types: contiguous subsets of simple

types specified by giving least and greatest

elements

– Example:

• Ordinal types: types that exhibit a discrete order

on the set of values

– All numeric integer types are ordinal types

– Always have comparison operators

– Often have successor and predecessor operations

• Real numbers are not ordinal; they have no

successor and predecessor operations

Programming Languages, Third Edition 17

Simple Types (cont’d.)

• Allocation schemes are usually dependent on the

underlying hardware for efficiency

• IEEE 754 standard tries to define standard

representations

Programming Languages, Third Edition 18

Type Constructors

• Since data types are sets, set operations can be

used to construct new types from existing ones

• Set operations that can be used include Cartesian

product, union, powerset, function set, and subset

– These set operations are called type constructors

• Example: subrange type is formed using subset

construction

• There are type constructors that do not correspond

to mathematical set constructions, and some set

operations that do not correspond to type

constructors
Programming Languages, Third Edition 19

Cartesian Product

• Given two sets U and V, the Cartesian product (or

cross product) consists of all ordered pairs of
elements from U and V:

• In many languages, the Cartesian product type

constructor is available as the record or structure

construction

Programming Languages, Third Edition 20

Cartesian Product (cont’d.)

• Example: In C, this struct declaration constructs

the Cartesian product of type

Programming Languages, Third Edition 21

Cartesian Product (cont’d.)

Programming Languages, Third Edition 22

• Difference between a Cartesian product and a

record structure:

– In a record structure, components have names

– In a Cartesian product, they are referred to by

position

• Most languages consider component names to be

part of the type defined by a record structure

• Tuple: a purer form of record structure in ML that is

essentially identical to the Cartesian product

Cartesian Product (cont’d.)

• Class: a data type found in object-oriented

languages

– Includes member functions or methods

– Closer to the second definition of data type, which

includes functions that act on the data

Programming Languages, Third Edition 23

Union

• Union of two types: formed by taking the set

theoretic union of the sets of their values

• Two varieties

– Discriminated unions: a tag or discriminator is

added to the union to distinguish the type of its

elements

– Undiscriminated unions: lack the tags; assumptions

must be made about the type of any value

• A language with undiscriminated unions has an

unsafe type system

Programming Languages, Third Edition 24

Union (cont’d.)

Programming Languages, Third Edition 25

• In C and C++, the union type constructor creates

undiscriminated unions

• Example:

– If x is a variable of type union IntOrReal, x.i is

interpreted as an int, and x.r is interpreted as a
double

Union (cont’d.)

Programming Languages, Third Edition 26

• Ada has a completely safe union mechanism called

a variant record

Union (cont’d.)

Programming Languages, Third Edition 27

• In ML, declare an enumeration with the vertical bar

for “or”:

• Then use pattern matching:

Union (cont’d.)

Programming Languages, Third Edition 28

• The tags IsInt and IsReal in ML are called data

constructors, since they construct data of each

kind within a union

• Unions are useful in reducing memory allocation

requirements for structures when different data

items are not needed simultaneously

• Unions are not needed in object-oriented

languages

– Use inheritance to represent different non-

overlapping data requirements

Subset

Programming Languages, Third Edition 29

• A subset in math is specified by giving a rule to

distinguish its elements

• Similar rules can be given in programming

languages to establish new types as subsets of

known types

• Ada has a subtype mechanism:

• Variant parts of records can be fixed using subtype

Subset (cont’d.)

• Such subset types inherit operations from their

parent types

– Most languages do not allow the programmer to

specify which operations are inherited and which are

not

• Inheritance in object-oriented languages can also

be viewed as a subtype mechanism

– With a great deal more control over which operations

are inherited

Programming Languages, Third Edition 30

Arrays and Functions

Programming Languages, Third Edition 31

• The set of all functions f:UV can give rise to a

new type in two ways:

– Array type

– Function type

• If U is an ordinal type, the function f can be thought

of as an array with index type U and component

type V

– If i is in U, then f(i) is the ith component of the

array

– Whole function can be represented by the sequence
or tuples of its values (f(low),…,f(high))

Arrays and Functions (cont’d.)

• Arrays are sometimes called sequence types

• Typically, array types can be defined with or

without sizes

– To define a variable of an array type, usually

necessary to specify size at translation time since

arrays are normally allocated statically

• In C, the size of an array must be a literal, not a

computed constant

• Cannot dynamically define an array size in C or

C++

Programming Languages, Third Edition 32

Arrays and Functions (cont’d.)

Programming Languages, Third Edition 33

• C allows arrays without specified size to be

parameters to functions (they are essentially

pointers), but the size must be supplied

– Size of the array is not part of the array in C or C++

Arrays and Functions (cont’d.)

• In Java, arrays are always dynamically (heap)

allocated, and the size can be dynamically

specified (but cannot change)

– Size is stored when an array is allocated in its

length property

Programming Languages, Third Edition 34

Programming Languages, Third Edition 35

Arrays and Functions (cont’d.)

• Ada allows array types declared without a size,

called unconstrained arrays, but requires a size

when array variables are declared

• Multidimensional arrays are also possible

• Arrays are perhaps the most widely used type

constructor

• Implementation is extremely efficient

– Space is allocated sequentially in memory

– Indexing is performed by an offset calculation from

the starting address

Programming Languages, Third Edition 36

Arrays and Functions (cont’d.)

• For multidimensional arrays, must decide which

index to use first in the allocation scheme

– Row-major form: all values of the first row are

allocated first, then all values of the second row, etc.

– Column-major form: all values of the first column

are allocated first, then all values of the second

column, etc.

• Functional languages usually do not supply an

array type; most use the list in place of an array

– Scheme has a vector type

Programming Languages, Third Edition 37

Arrays and Functions (cont’d.)

• General function and procedure types can be

created in some languages

• Example: in C, define a function type from integers

to integers:

– Use this type for variables or parameters:

Programming Languages, Third Edition 38

Arrays and Functions (cont’d.)

• In ML, you can define a function type:

– Use it in a similar fashion:

Programming Languages, Third Edition 39

Pointers and Recursive Types

Programming Languages, Third Edition 40

• Reference or pointer constructor: constructs the

set of all addresses that refer to a specified type

– Does not correspond to a set operation

• Example in C:

– Constructs the type of all addresses where integers

are stored

• Pointers are implicit in languages that perform

automatic memory management

– In Java, all objects are implicitly pointers that are
allocated explicitly (using the new operator) but

deallocated automatically by garbage collection

Pointers and Recursive Types (cont’d.)

• Reference: address of an object under control of

the system that cannot be used as a value or

operated on in any way (except copying)

• Pointer: can be used as a value and manipulated

by the programming

• References in C++ are created by a postfix &

operator

• Recursive type: a type that uses itself in its

declaration

Programming Languages, Third Edition 41

Pointers and Recursive Types (cont’d.)

• Recursive types are important in data structures

and algorithms

– Represent data whose size and structure is not

known in advance and may change as computation

proceeds

– Examples: lists and binary trees

• Consider this C-like declaration of lists of

characters:

Programming Languages, Third Edition 42

Pointers and Recursive Types (cont’d.)

• C requires that each data type have a fixed

maximum size determined at translation time

– Must use pointer to allow manual dynamic allocation

to overcome this problem

– Each individual element in a CharListNode now has

a fixed size, and they can be strung together to form

a list of arbitrary size

Programming Languages, Third Edition 43

Data Types and the Environment

• Pointer types, recursive types, and general function

types require space to be allocated dynamically

– Require fully dynamic environments with automatic

allocation and deallocation (garbage collection)

– Found in the functional languages and the more

dynamic object-oriented languages

• More traditional languages (C++ and Ada) restrict

these types so that a heap (a dynamic space under

programming control) is sufficient

• Environment issues will be discussed in full in

Chapter 10
Programming Languages, Third Edition 44

Type Nomenclature in Sample

Languages

Programming Languages, Third Edition 45

• Various language definitions use different and

confusing terminology to define similar things

• This section gives a brief description of the

differences among three languages: C, Java, and

Ada

C

• Simple data types are called basic types,

including:

– void type

– Numeric types:

• Integral types, which are ordinal (12 possible kinds)

• Floating types (3 possible kinds)

• Integral types can be signed or unsigned

• Derived types: constructed using type

constructors

Programming Languages, Third Edition 46

Programming Languages, Third Edition 47

Java

• Simple types are called primitive types, including:

– Boolean (not numeric or ordinal)

– Numeric, including:

• Integral (ordinal)

• Floating point

• Reference types: constructed using type

constructors

– Array

– Class

– Interface

Programming Languages, Third Edition 48

Programming Languages, Third Edition 49

Ada

• Ada has a rich set of types

– Simple types are called scalar types

– Ordinal types are called discrete types

– Numeric types include real and integer types

– Pointer types are called access types

– Array and record types are called composite types

Programming Languages, Third Edition 50

Ada (cont’d.)

Programming Languages, Third Edition 51

Type Equivalence

Programming Languages, Third Edition 52

• Type equivalence: when are two types the same?

• Can compare the sets of values as sets

– Are the same if they contain the same values

• Structural equivalence: two data types are the

same if they have the same structure

– Built in the same way using the same type

constructors from the same simple types

– This is one of the principal forms of type equivalence

in programming languages

Type Equivalence (cont’d.)

Programming Languages, Third Edition 53

• Example:

– Rec1 and Rec2 are

structurally equivalent

– Rec1 and Rec3 are not

structurally equivalent (char

and int fields are reversed)

Type Equivalence (cont’d.)

Programming Languages, Third Edition 54

• Structural equivalence is relatively easy to

implement (except for recursive types)

– Provides all the information needed to perform error

checking and storage allocation

• To check structural equivalence, a translator may

represent types as trees and check equivalence

recursively on subtrees

• Questions still arise over how much information is

included in a type under the application of a type

constructor

Type Equivalence (cont’d.)

• Example: are A1 and A2 structurally equivalent?

– Yes, if size of the index set is not part of an array

type

– Otherwise, no

• Similar question arises regarding member names

of structures

Programming Languages, Third Edition 55

Type Equivalence (cont’d.)

Programming Languages, Third Edition 56

• Example: Are these two structures structurally

equivalent?

– If structures are considered to be just Cartesian

products, then yes

– They are typically not considered equivalent,

because variables of different structures would have

to use different names to access member data

Type Equivalence (cont’d.)

• Type names in declarations may or may not be

given explicitly

– In C, variable declarations can use anonymous

types

– Names can also be given right in structs and

unions, or by using a typedef

• Structural equivalence when type names are

present can be done by simply replacing each

name by its associated type expression in its

declaration (except for recursive types)

Programming Languages, Third Edition 57

Type Equivalence (cont’d.)

• Example: in C code

– Variable a has two names:

struct RecA and RecA

(given by the typedef)

– Variable b has only the

name RecB (the struct

name was left blank)

– Variable c has no type

name at all (only an internal

name not usable by the

programmer)

Programming Languages, Third Edition 58

Type Equivalence (cont’d.)

• Structural equivalence by replacing names with

types can lead to infinite loops in a type checker

when applied to recursive types

Programming Languages, Third Edition 59

Type Equivalence (cont’d.)

Programming Languages, Third Edition 60

• Name equivalence: two types are the same only if

they have the same name

– Easier to implement than structural equivalence, as

long as every type has an explicit name

– Two types are equivalent only if they are the same

name

– Two variables are type equivalent only if their

declarations use exactly the same type name

Type Equivalence (cont’d.)

• Example: in C code:

– a, b, c, and d are structurally

equivalent

– a and c are name equivalent,

and not name equivalent to b

or d

– b and d are not name

equivalent to any other

variable

Programming Languages, Third Edition 61

Type Equivalence (cont’d.)

Programming Languages, Third Edition 62

• Ada implements a very pure form of name

equivalence

– Requires type names in variable and function

declarations in virtually all cases

• C uses a form of type equivalence that falls

between name and structural equivalence:

– Name equivalence for structs and unions

– Structural equivalence for everything else

• Pascal is similar to C, except that almost all type

constructors lead to new, inequivalent types

Type Equivalence (cont’d.)

• Java’s approach is simple:

– It has no typedefs

– class and interface declarations implicitly create

new type names, and name equivalence is used for

these types

– Arrays use structural equivalence, with special rules

for establishing base type equivalence

Programming Languages, Third Edition 63

Type Checking

• Type checking: the process by which a translator

verifies that all constructs are consistent

– Applies a type equivalence algorithm to expressions

and statements

– May vary the use of the type equivalence algorithm

to suit the context

• Two types of type checking:

– Dynamic: type information is maintained and

checked at runtime

– Static: types are determined from the text of the

program and checked by the translator

Programming Languages, Third Edition 64

Type Checking (cont’d.)

• In a strongly typed language, all type errors must

be caught before runtime

– These languages must be statically typed

– Type errors are reported as compilation error

messages that prevent execution

• A language definition may not specify whether

dynamic or static typing is used

Programming Languages, Third Edition 65

Type Checking (cont’d.)

• Example1:

– C compilers apply static type checking during

translation, but C is not strongly typed since many

inconsistencies do not cause compilation errors

– C++ adds strong type checking, but mainly in the

form of compiler warnings rather than errors, which

do not prevent execution

Programming Languages, Third Edition 66

Type Checking (cont’d.)

• Example 2:

– Scheme is a dynamically typed language, but types

are rigorously checked

– Type errors cause program termination

– No types in declarations and no explicit type names

– Variables have no predeclared types, but take on the

type of the value they possess

Programming Languages, Third Edition 67

Type Checking (cont’d.)

• Example 3:

– Ada is a strongly typed language

– All type errors cause compilation error messages

– Certain errors, like range errors in array subscripting,

cannot be caught prior to execution

– Such errors cause exceptions that will cause

program termination if not handled by the program

Programming Languages, Third Edition 68

Type Checking (cont’d.)

• Type inference: types of expressions are inferred

from the types of their subexpressions

– Is an essential part of type checking

• Type-checking rules and type inference rules are

often intermingled

– They also have a close interaction with the type

equivalence algorithm

• Type inference and correctness rules are one of

the most complex parts of the semantics of a

language

Programming Languages, Third Edition 69

Type Compatibility

Programming Languages, Third Edition 70

• Two different types that may be considered correct

when combined in certain ways are called compatible

– In Ada, any two subranges of the same base type

are compatible

– In C and Java, all numeric types are compatible (and

conversions are performed)

• Assignment compatibility: the left and right sides of

an assignment statement are compatible when they are

the same type

• Ignores that the left side must be an l-value and the

right side must be an r-value

Type Compatibility (cont’d.)

• Assignment compatibility can include cases where

both sides do not have the same type

• In Java, x=e is legal when e is a numeric type

whose value can be converted to the type of x

without loss of information

Programming Languages, Third Edition 71

Implicit Types

• Implicit types: types that are not explicitly given in

a declaration

– The type must be inferred by the translator, either

from context information or from standard rules

• In C, variables are implicitly integers if no type is

given, and functions implicitly return an integer

value if no return type is given

• In Pascal, named constants are implicitly typed by

the literals they represent

• Literals are the major example of implicitly typed

entities
Programming Languages, Third Edition 72

Overlapping Types

and Multiply-Typed Values

• Two types may overlap, with values in common

• Although preferable for types to be disjoint, this

would eliminate the ability to create subtypes

through inheritance in object-oriented languages

• In C, types like unsigned int and int overlap

• In C, the literal 0 is a value for every integral type, a

value of every pointer type, and represents the null

pointer

• In Java, the literal value null is a value of every

reference type

Programming Languages, Third Edition 73

Shared Operations

Programming Languages, Third Edition 74

• Each type is associated, usually implicitly, with a

set of operations

• Operations may be shared among several types or

have the same name as other operations that may

be different

• Example: + operator can be real addition, integer

addition, or set union

• Overloaded operation: the same name is used for

different operations

• Translator must decide which operation is meant

based on the types of the operands

Type Conversion

• Type conversion: converting from one type to

another

– Can be built into the type system to happen

automatically

• Implicit conversion (or coercion): inserted by the

translator

• Widening conversion: target data type can hold

all of the converted data without loss of data

• Narrowing conversion: conversion may involve a

loss of data

Programming Languages, Third Edition 75

Type Conversion (cont’d.)

• Implicit conversion:

– Can weaken type checking so that errors may not be

caught

– Can cause unexpected behavior if the conversion is

done in a different way than the programmer expects

• Explicit conversion (or cast): conversion

directives are written into the code

– Conversions are documented in the code

– Less likelihood of unexpected behavior

– Makes it easier for the translator to resolve

overloading
Programming Languages, Third Edition 76

Type Conversion (cont’d.)

• Example In C++:

– Ambiguous, because of the possible implicit
conversions from int to double on either first or

second parameter

• Java only permits widening implicit conversions for

arithmetic types

• C++ emits warning messages for narrowing

Programming Languages, Third Edition 77

Type Conversion (cont’d.)

• Explicit casts need to be somewhat restricted

– Often to simple types, or just arithmetic types

• If casts are permitted for structured types, they

must have identical sizes in memory

– Allows translation to reinterpret the memory as a

different type

• Example: in C, malloc and free functions are

declared using a generic pointer or anonymous
pointer type void*

• Object-oriented languages allow conversions from

subtypes to supertypes and back in some cases
Programming Languages, Third Edition 78

Type Conversion (cont’d.)

• Alternative to casts is to use predefined or library

functions to perform conversions

– Ada uses attribute functions to allow conversions

– Java contains functions like toString to convert

from int to String and parseInt to convert from

String to int

• Undiscriminated unions can hold values of different

types

– With no discriminant or tag, a translator cannot

distinguish values of one type from another

Programming Languages, Third Edition 79

Polymorphic Type Checking

• Most statically typed languages required that

explicit type information be given for all names in

declarations

• It is possible to determine types of names without

explicit declaration:

– Can collect information on the uses of a name and

infer the type from the set of all uses

– Can declare a type error because some of the uses

are incompatible with others

• This type inference and type checking is called

Hindley-Milner type checking
Programming Languages, Third Edition 80

Polymorphic Type Checking (cont’d.)

Programming Languages, Third Edition 81

• Example in C code:

– a must be declared as an array of integers, and i as

an integer, giving an integer result

• Type checker starts out with this tree:

Polymorphic Type Checking (cont’d.)

• Types of the names (leaf nodes) are filled in from

declarations

Programming Languages, Third Edition 82

Polymorphic Type Checking (cont’d.)

• Type checker now

checks the subscript
node (labeled [])

– Left operand must be

an array

– Right operand must be
an int

– Inferred type of the

subscript node is the

component type of the
array - int

Programming Languages, Third Edition 83

Polymorphic Type Checking (cont’d.)

• + node type is checked

– Both operands must

have the same type

– This type must have a
+ operation

– Result is the type of
the operands - int

Programming Languages, Third Edition 84

Polymorphic Type Checking (cont’d.)

Programming Languages, Third Edition 85

• Example: in C code:

– What if the
declarations of a

and i were missing?

• Type checker would

first assign type

variables to all names

that do not yet have

types

Polymorphic Type Checking (cont’d.)

• Type checker now

checks the subscript

node

– Infers that a must

be an array

– Infers that I must

an int

– Replaces with
int in the entire

tree

Programming Languages, Third Edition 86

Polymorphic Type Checking (cont’d.)

• Type checker now

concludes that the

subscript node is type

correct and has the

type

Programming Languages, Third Edition 87

Polymorphic Type Checking (cont’d.)

• + node type is

checked

– Concludes that
must be type int

– Replaces
everywhere by int

• This is the basic form

of operation of

Hindley-Milner type

checking

Programming Languages, Third Edition 88

Polymorphic Type Checking (cont’d.)

• Once a type variable is replaced by an actual type,

all instances of that variable name must be

updated with the new type

– Called instantiation of type variables

• Unification: when type expressions for variables

can change for type checking to succeed

– Example array of and array of : we need to have
 == , so must be changed to everywhere it

occurs

– Is a kind of pattern matching

Programming Languages, Third Edition 89

Polymorphic Type Checking (cont’d.)

• Unification involves three cases:

– Any type variable unifies with any type expression

(and is instantiated to that expression)

– Any two type constants unify only if they are the

same type

– Any two type constructions (such as array or struct)

unify only if they are applications of the same type

constructor and all of their component types also

recursively unify

Programming Languages, Third Edition 90

Polymorphic Type Checking (cont’d.)

• Hindley-Milner type checking advantages:

– Simplifies the amount of type information the

programmer must write

– Allows types to remain as general as possible while

still being strongly checked for consistency

• Hindley-Milner type checking implicitly implements

polymorphic type checking

• Array of is a set of infinitely many types, called

parametric polymorphism

– Hindley-Milner uses implicit parametric

polymorphism
Programming Languages, Third Edition 91

Polymorphic Type Checking (cont’d.)

• Sometimes called ad hoc polymorphism to

distinguish it from overloading

• Pure polymorphism (or subtype polymorphism):

when objects that share a common ancestor also

either share or redefine operators that exist for the

ancestor

• Monomorphic: describes a language that exhibits

no polymorphism

Programming Languages, Third Edition 92

Polymorphic Type Checking (cont’d.)

• Polymorphic functions are real goal of parametric

polymorphism and Hindley-Milner type checking

• Example:

– Body is the same if int is replaced by any other

arithmetic type

– Could add a new parameter representing the >

Programming Languages, Third Edition 93

Polymorphic Type Checking (cont’d.)

• In C-like syntax:

• In ML legal syntax, this becomes:

Programming Languages, Third Edition 94

Polymorphic Type Checking (cont’d.)

Programming Languages, Third Edition 95

Polymorphic Type Checking (cont’d.)

Programming Languages, Third Edition 96

Polymorphic Type Checking (cont’d.)

Programming Languages, Third Edition 97

Polymorphic Type Checking (cont’d.)

• Can now use max in any situation where the actual

types unify

• If we provide these definitions in ML:

– We can call max function as follows:

Programming Languages, Third Edition 98

Polymorphic Type Checking (cont’d.)

• Most general type possible for max function, called

its principal type, is:

• Each call to max specializes this principle type to

a monomorphic type

– May also implicitly specialize the types of the

parameters

• Any polymorphically typed object passed into a

function as a parameter must have a fixed

specialization for the duration of the function

– This restriction is called let-bound polymorphism

Programming Languages, Third Edition 99

Polymorphic Type Checking (cont’d.)

• Two problems complicate Hindley-Milner type

checking:

– Let-bound polymorphism

– The occur-check problem

• Polymorphic types also have translation issues

– Copying values of arbitrary type without knowing the

type means the translator cannot determine the size

of the values

– May cause code bloat

Programming Languages, Third Edition 100

Explicit Polymorphism

• Explicit parametric polymorphism: to define a

polymorphic data type, the type variable must be

written explicitly

• Example: stack declaration in ML code

– Values of type Stack can be written as:

Programming Languages, Third Edition 101

Explicit Polymorphism (cont’d.)

• Explicitly parameterized polymorphic data types

are nothing more than a mechanism for creating

user-defined type constructors

– A type constructor is a function from types to types

• Construction can be expressed directly in C as a
typedef

• In ML, this is done with the type construct

• C++ is a language with explicit parametric

polymorphism, but without the associated implicit

Hindley-Milner type checking

– Uses the template mechanism
Programming Languages, Third Edition 102

Explicit Polymorphism (cont’d.)

Programming Languages, Third Edition 103

Explicit Polymorphism (cont’d.)

Programming Languages, Third Edition 104

• Implicitly constrained parametric

polymorphism: implicitly applies a constraint to

the type parameter

• Explicitly constrained parametric

polymorphism: makes explicit what types of

parameters are required

Case Study: Type Checking in

TinyAda

• Goals:

– Check identifiers to ensure that they are declared

before they are used

– Check that identifiers are not declared more than

once in the same block

– Record the role of an identifier as a constant,

variable, procedure, or type name

Programming Languages, Third Edition 105

Type Compatibility, Type Equivalence,

and Type Descriptors

• TinyAda parser must:

– Check that the type of an operand is appropriate for

the operation being performed

– Check that the name on the left side of an

assignment statement is type-compatible with the

expression on the right side

– Restrict the types of certain elements of

declarations, such as the index types of an array

Programming Languages, Third Edition 106

Type Compatibility, Type Equivalence,

and Type Descriptors (cont’d.)

• TinyAda uses a loose form of name equivalence to

determine type compatibility

– For arrays and enumerations, two identifiers are

type-compatible if and only if they were declared

using the same type name in their declarations

– For built-in types INTEGER, CHAR, and BOOLEAN and

their programmer-defined subrange types, two

identifiers are type-compatible if and only if their

supertypes are name-equivalent

Programming Languages, Third Edition 107

Type Compatibility, Type Equivalence,

and Type Descriptors (cont’d.)

• Type descriptor: primary data structure used to

represent type attributes

• Type descriptor is entered into the symbol table

when the type name is introduced

– At startup for built-in type names INTEGER, CHAR,

and BOOLEAN

– Whenever new type declarations are encountered

Programming Languages, Third Edition 108

The Design and Use

of Type Descriptor Classes

• Type descriptor is like a variant record, containing

different attributes depending on the category of

the data type being described

• Each descriptor includes a type form field, with
possible values of ARRAY, ENUM, SUBRANGE, and NONE,

to identify the category of the data type

• Array type descriptor includes attributes for index

types and element types (these attributes are also

type descriptors)

• Enumeration type descriptor includes a list of

symbol entries for the enumerate constant names
Programming Languages, Third Edition 109

The Design and Use

of Type Descriptor Classes (cont’d.)

• Type descriptors for subrange types (including
INTEGER, CHAR, and BOOLEAN) include values of

lower and upper bound and a type descriptor for

the supertype

• There is no variant record structure in Java

– Can model it with a TypeDescriptor class and

three subclasses: ArrayDescriptor,

SubrangeDescriptor, and EnumDescriptor

Programming Languages, Third Edition 110

Entering Type Information

in Declarations

• Type information must be entered wherever

identifiers are declared in a source program

• Type information comes from type identifiers or

from a type definition

– Type identifiers: type descriptor is available in the

identifier’s symbol entry

– Type definition: a new type might be created

Programming Languages, Third Edition 111

Checking Types in Operands

in Expressions

• The rules for TinyAda expressions give hints as to

how their types should be checked

• The type of every operand must be checked, and

the correct type descriptor must be returned

Programming Languages, Third Edition 112

Processing Names: Indexed

Component References and

Procedure Calls
• Syntax for TinyAda indexed component references

and procedure calls is the same if the procedure

expects at least one parameter

– Must distinguish between these two types of

phrases, based on the role of the leading identifier

Programming Languages, Third Edition 113

Completing Static Semantic Analysis

• Two other types of semantic restrictions can be

imposed during parsing:

– Checking of parameter modes

– Check that only static expressions are used in

number declarations and range type definitions

• Tanya has three parameter modes:

– Input only: with the keyword in

– Output only: with the keyword out

– Input/output: with the keywords in out

Programming Languages, Third Edition 114

