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Here is a summary of the main differences between 
classical and quantum computing

We start with classical probabilistic computation.
Example: Miller-Rabin primality test. Very roughly (!)

stated:

To determine if n is prime:
Randomly generate a bunch of numbers m < n.
Check that mk = 1 (mod n), or -1, for

   certain (carefully chosen!) k.

If so, return TRUE, else FALSE.

As we generate more and more bits of m, the number of

possible “configurations of memory” increases exponentially.

But the right answer is obtained with very high probability.
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A picture of this process:

time 

“possible configuration of 
memory”

(only one when we start out)
￼3



t=0 ￼4



t=1 ￼5



t=2 ￼6



t=3 ￼7



|n|

2|n|

￼8



|n|

2|n|

Desired configurations

m

￼9



Interpretation:

• At any step of the computation, memory

can be in any one of a large number of

configurations.
• Each configuration occurs with a certain

probability; represent this set of probabilities

as a vector (2n components for n bits).

• The vector of probabilities evolves over time

according to a certain set of rules determined

by the algorithm.
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“Vector of probabilities”
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“Vector of probabilities”
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t=2

“Vector of probabilities”
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t=3

“Vector of probabilities”
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t=4

“Vector of probabilities”
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t=3

The “tree” representation is a little misleading:

many 
configurations
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t=4

The “tree” representation is a little misleading:

can lead to one

￼17



...but this clarifies what’s happening:

vj(t)
vi(t + 1)

Mij = prob that j leads to iLet

vi(t + 1) =
X

j

Mijvj(t)Then

.....to sum up:

i
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i.e., matrix multiplication!
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Evolution of probabilities (classical formulation):
Let v(t) = vector of probabilities at time t.

vi(t) = probability that we are in configuration

          i at time t.

I.e., there is a matrix M such that,

                 v(t+1) = Mv(t)

Mi j  is simply the probability that configuration j 

       yields configuration i.

We have seen that v(t) evolves linearly.

So (of course!) Mi j is a real number in [0,1]. 
M must leave Σivi(t) invariant (prob’s sum to 1).
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Evolution of probabilities (quantum formulation):

Let v(t) = vector of probability amplitudes at time t.

vi(t) is a complex number whose square norm |vi(t)|2 = 
probability that we are in configuration i at time t.

I.e., there is a matrix U such that,

                 v(t+1) = Uv(t)
Ui j is a complex number whose norm squared is the

probability that configuration j yields configuration i.

As in the classical case, v(t) evolves linearly.

So (of course!) Ui j is not necessarily a real number 

in [0,1]. 
U must leave Σi |vi(t)|2 invariant (prob’s sum to 1).
Hence U is unitary: UU† = 1.
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Once again:
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Measurement
After the computation has evolved, we

may “measure” the configuration.

The matrix U, applied to the initial configuration,

determines the probability that we end up in

any given configuration.

Once the bits of the configuration have been

measured, they will retain their measured value

until acted on again (“collapse of the 
wavefunction”).
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WHY?

Don’t ask!
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Consequences

• Configurations can actually cancel!

• Because of unitarity, quantum computation

is reversible!
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Cancel

￼29



t=3

Cancel

￼30



t=4 ￼31



t=4

Left with exactly

what we want!
(we hope!)
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Let’s look at some of this stuff in more detail.....


