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In this column, we review these three books:

1. Algorithmic Aspects of Machine Learning, by Ankur Moitra. A succinct book about theoretical
aspects of ML. Review by Sarvagya Upadhyay.

2. Network Flow Algorithms, by David Williamson. An examination of many aspects of these impor-
tant algorithms. Review by S.V. Nagaraj.

3. The Theory of Quantum Information, by John Watrous. A new, unified treatment of this vital area.
Review by Steve Fenner.

As always, I’m on the lookout for reviewers. SIGACT News WANTS YOU!! Please choose from among
the books listed on the next page. . . or not. These are mostly suggestions! Please feel free to suggest an
appropriate title of your own. Indeed, many of those listed include books I don’t have on hand, and can ask
the publisher to forward to you. The latter method remains preferable in our present global predicament.

In Memoriam: I was deeply saddened to learn of the recent passing of Alan Selman, a leading light in
computational complexity theory. I am very lucky to count Alan as one of my mentors and co-authors. On
a personal level, he was especially supportive to me in my early days as a computer scientist. I will miss
his warm, friendly greetings and conversations at conferences and visits. You can read more from his many
colleagues in Lane Hemaspaandra’s column in this issue.

1© Frederic Green, 2021.
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BOOKS THAT NEED REVIEWERS FOR THE SIGACT NEWS COLUMN

Algorithms
1. The Algorithm Design Manual, by Steven S. Skiena

2. Algorithms and Data Structures, by Helmut Knebl

3. Beyond the Worst-Case Analysis of Algorithms, by Tim Roughgarden

Computability, Complexity, Logic
1. Applied Logic for Computer Scientists: Computational Deduction and Formal Proofs, by Mauricio

Ayala-Rincón and Flávio L.C. de Moura.

2. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory, by Martin Grohe.

3. Mathematics in Computing, by Gerard O’Regan.

4. Semigroups in Complete Lattices, by P. Eklund, J. Gutiérrez Garcı́a, U. Höhle, and J. Kortelainen.

Miscellaneous Computer Science

1. Elements of Causal Inference: Foundations and Learning Algorithms, by Jonas Peters, Dominik Janz-
ing, and Bernhard Schölkopf.

2. Partially Observed Markov Decision Processes, by Vikram Krishnamurthy

3. Statistical Modeling and Machine Learning for Molecular Biology, by Alan Moses

4. Language, Cognition, and Computational Models, Theirry Poibeau and Aline Villavicencio, eds.

5. Computational Bayesian Statistics, An Introduction, by M. Antónia Amaral Turkman, Carlos Daniel
Paulino, and Peter Müller.

6. Variational Bayesian Learning Theory, by Shinichi Nakajima, Kazuho Watanabe, and Masashi Sugiyama.

7. Knowledge Engineering: Building Cognitive Assistants for Evidence-based Reasoning, by Gheorghe
Tecuci, Dorin Marcu, Mihai Boicu, and David A. Schum.

8. Quantum Computing: An Applied Approach, by Jack D. Hidary
Cryptography and Security

1. Computer Security and the Internet: Tools and Jewels, by Paul C. van Oorschot

Combinatorics and Graph Theory
1. Finite Geometry and Combinatorial Applications, by Simeon Ball

2. Combinatorics, Words and Symbolic Dynamics, Edited by Valérie Berthé and Michel Rigo

Programming etc.

1. Formal Methods: An Appetizer, by Flemming Nielson and Hanne Riis Nielson

2. Programming for the Puzzled: Learn to Program While Solving Puzzles, by Srini Devadas.

3. Sequential and Parallel Algorithms and Data Structures, by P. Sanders, K. Mehlhorn, M. Dietzfel-
binger, R. Dementiev

Miscellaneous Mathematics

1. Introduction to Probability, by David F. Anderson, Timo Seppäläinen, and Benedek Valkó.

2. Algebra and Geometry with Python, by Sergei Kurgalin and Sergei Borzunov.
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Review of2

Algorithmic Aspects of Machine Learning
By

Ankur Moitra
Published by Cambridge University Press

Paperback, 151 pages, $ 34.99

Review by
Sarvagya Upadhyay (supadhyay@fujitsu.com)

Fujitsu Laboratories of America
1240 East Arques Avenue, Sunnyvale CA 94085, USA

1 Overview

Over the past two decades, machine learning has seen tremendous development in practice. Technological
advancement and increased computational resources have enabled several learning algorithms to become
quite useful in practice. Although many families of learning algorithms are heuristic in nature, their use-
fulness cannot be understated. Empirical observations coupled with abundance of new datasets have led to
development of novel algorithmic techniques that aim to accomplish a variety of learning tasks efficiently
on real-world problems.

But what makes these algorithms work on such real-world problems? Clearly, producing correct solu-
tions is one aspect of it. The other aspect is efficiency. While many of these algorithms solve hard problems
and cannot be theoretically efficient (under plausible complexity-theoretic assumptions), they seemingly do
work on real-world problems. It begets the question: are there conditions under which these algorithms
become tractable? Having an answer to this fundamental question sheds light on the power and limitations
of these algorithmic techniques.

This book focuses on different learning models and problems, and sets out to capture the assumptions
that make certain algorithms tractable. The emphasis is on models and algorithmic techniques that make
learning an efficient endeavor.

2 Summary of Contents

This book covers six different topics. Chapter 1 serves as a short introduction and the rest of the eight
chapters are devoted to the following topics: non-negative matrix factorization, tensor decomposition, sparse
recovery, sparse coding, learning mixture models, and matrix completion. A brief summary of each of the
main chapters is given below.

Chapter 2: Nonnegative Matrix Factorization This chapter explores non-negative matrix factorization
(NMF). Given a non-negative matrixM ∈ Rn×n, NMF asks for two non-negative matricesA ∈ Rn×r andW ∈
Rr×n such that M = AW . The definition closely resembles singular value decomposition (SVD); however,
NMF is a hard problem in the complexity-theoretic sense. The chapter focuses on fundamental definitions
concerning NMF, a heuristic algorithm used in practice (alternating minimization), and fundamental results
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in solving systems of polynomial equations that lead to an algorithm for accomplishing NMF. Towards the
end, the chapter focuses on topic models and how NMF can be used to learn their parameters.

Chapter 3: Tensor Decompositions (Algorithms) Tensors are higher-order generalizations of matrices
and vectors. Several questions that are raised for matrices either do not make sense for tensors or become
intractable. This chapter starts with the well known rotation problem that arises in matrix factorization,
and proceeds to show how several results in matrices do not automatically translate to tensors. One of the
main sections of the chapter is devoted to Jenrich’s algorithm that gives a tractable method to find tensor
factorization under some assumptions (Theorem 3.3.2 in the book). The final section illustrates the utility
of Jenrich’s algorithm to the case when the tensor is perturbed by some noise.

Chapter 4: Tensor Decompositions (Applications) This chapter is devoted to applications of tensor
decomposition. The first application considered is motivated from evolutionary biology, which describes
evolutionary relationships among species: phylogenetic trees. A special case of phylogenetic tree is hid-
den Markov models (HMMs). The next application considered is community detection, specifically the
stochastic block model. The notion of an individual belonging to multiple communities gives rise to mixed
membership models, which is considered next. This is divided into two parts: pure topic models and latent
Dirichlet allocation (LDA). The chapter concludes with applications of tensor decomposition in indepen-
dent component analysis (ICA). In all of these applications, the crucial ingredient is Jenrich’s algorithm as
described in Chapter 3.

Chapter 5: Sparse Recovery This chapter focuses on the following question: Given a system of under-
determined linear equations Ax = b, when can we determine x uniquely under the assumption that x is
sparse? The question crucially arises in signal processing, where x is the unknown signal that one wishes
to recover. The answer lies in conditions imposed on the matrix A. This leads to the next section, which
discusses the incoherence principle, a crucial notion that enables us to recover a sparse x exactly. The
following two sections showcase different algorithms for solving the problem: (i) an example of pursuit
algorithms known as the orthogonal matching pursuit algorithm; and (ii) a numerically unstable algorithm
called Prony’s method. The final section is on compressed sensing that introduces a new assumption on A
called the restricted isometry property (RIP).

Chapter 6: Sparse Coding Given a collection of signals that are sparse in an unknown basis, can we
still learn the signal? This question is known as sparse coding and forms the focal point of this chapter.
The first section introduces two popular methodologies to tackle this problem: (i) the method of optimal
directions; and (ii) k-SVD. They are heuristic approaches and can be considered as variants of the alternating
minimization technique introduced in Chapter 2. For provable algorithmic guarantees, the chapter considers
two separate cases: the undercomplete case and the overcomplete case. The undercomplete case is when
the matrix A has full column rank. Under certain stochastic assumptions, one can recover A using convex
programming relaxation. For the overcomplete case, the chapter first takes a detour and discusses gradient
descent. The overcomplete case is a non-convex problem; however, under certain stochastic assumptions, A
can be recovered using gradient descent.

Chapter 7: Gaussian Mixture Models Many natural statistical questions can be modeled as a linear
combination of independent Gaussian distributions. Such a combination is known as a mixture of Gaus-
sians. The question of how to learn individual Gaussian parameters from samples drawn from a mixture
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of Gaussians forms the crux of this chapter. The first technique considered is the method of moments that
essentially solves a system of polynomial equations. However, the solution is not unique. Another ap-
proach is expectation maximization, which is briefly discussed. For provable guarantees, the first algorithm
considered in this chapter is based on clustering. The following section focuses on the weakness of this
approach, i.e., generating a sample where one cannot figure out which component generated it. Next, the
chapter discusses clustering-free algorithms. The final two sections focus on an algorithm to learn a mixture
of univariate Gaussian mixtures.

Chapter 8: Matrix Completion This chapter delves into reconstructing a matrix after observing a few
entries of it. Without any restriction on the matrix, this task is impossible, for there are far too many
choices. However, when the matrix is low-rank and satisfies the incoherence principle, then simple convex
programming relaxation can help reconstruct the matrix uniquely. The first section sets the ground rules
for the matrix to be reconstructed. Then the nuclear norm is introduced in following section. The section
follows by relaxing the optimization problem for computing the nuclear norm and gives the conditions under
which exact recovery is possible. The final section focuses on completing the proof of reconstruction.

3 Evaluation and Opinion

For a 150 page book, the topics covered in this monograph are varied, with a common theme of designing
efficient algorithms for learning models under some assumption. Each chapter is more or less independent
of the other chapters, except Chapter 4 (which depends on Chapter 3). The variety of topics covered makes
the book quite dense from a technical viewpoint. It makes this book a difficult read for a beginner where
a fair amount of knowledge in underlying mathematical principles is necessary and often requires pointers
to references for further clarification. The book’s targeted audience can be graduate students interested in
theoretical aspects of machine learning algorithms.

I found the book an interesting read. While there were certain sections that weren’t clear to me, the
challenges to prove simple but unproven claims and delving deeper into the topics makes it a fascinating
read. The exercises at the end of each chapter are few but they are pertinent and worth solving. There were
certain topics about which I had tangential knowledge; and knowing a little more about them (from the
author’s point of interest) was great. For me, one of the best parts of the book is the introduction to each
chapter. They thoroughly motivate the topic of the chapters.

Finally, these topics are worth expanding and deserve a thorough and comprehensive treatment. I hope
that there is a future for subsequent editions of the book.
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Review of3

Network Flow Algorithms
David P. Williamson

Cambridge University Press, 2019
326 pages, Paperback, ISBN 9781316636831 $39.99

Review by
S.V.Nagaraj (svnagaraj@acm.org)

VIT, Chennai Campus, India

1 Introduction

This book is on algorithms for network flows. Network flow problems are optimization problems where
given a flow network, the aim is to construct a flow that respects the capacity constraints of the edges of the
network, so that incoming flow equals the outgoing flow for all vertices of the network except designated
vertices known as the source and the sink. Network flow algorithms solve many real-world problems.
This book is intended to serve graduate students and as a reference. The book is also available in eBook
(ISBN 9781316952894/US$ 32.00), and hardback (ISBN 9781107185890/US$99.99) formats. The book
has a companion web site www.networkflowalgs.com where a pre-publication version of the book can be
downloaded gratis.

2 Summary

The book consists of nine chapters. The first chapter begins with a prelude on shortest path algorithms.
Dijkstra’s algorithm for non-negative costs and the Bellman-Ford algorithm for negative costs are briefly
introduced. Negative cost cycle detection is also discussed.

The second chapter is on maximum flow algorithms. The maximum flow problem, and its dual problem,
the minimum s-t cut problem, are the main focus. These two problems have been useful for modeling many
problems involving various types of networks. Surprisingly, these two problems have also proven useful in
modeling problems that do not apparently involve networks or the flow of material. To exemplify this, three
applications are considered. They are carpool sharing, the baseball elimination problem, and finding a max-
imum density subgraph. Other topics in this chapter include a discussion about most improving augmenting
paths (the augmenting paths whose minimum residual capacity arcs are as large as possible), a capacity
scaling algorithm, shortest augmenting paths, and the push-relabel algorithm. The push-relabel algorithm,
also known as the preflow-push algorithm, is an algorithm for computing maximum flows in a flow network
that applies local operations as opposed to (say) Ford-Fulkerson.

The third chapter is on global minimum cut algorithms. Given an undirected graph G(V,E), a global min-
imum cut is a partition of V into two subsets (A,B) such that the number of edges between A and B is
minimized. In this chapter, the global minimum cut problem for directed graphs is also considered. The
Hao-Orlin algorithm for finding a global minimum cut in directed graphs, the MA ordering algorithm for
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6



finding a global minimum cut in undirected graphs, the random contraction algorithm for finding a global
minimum cut in undirected graphs, and Gomory-Hu trees are discussed. The Gomory-Hu tree is a data
structure related to minimum s-t cuts of an undirected graph.

The fourth chapter discusses some more maximum flow algorithms. Blocking flows in unit-capacity graphs
and the Goldberg-Rao algorithm are the key concepts studied in this chapter. The purpose of discussing these
additional algorithms is to usher in one of the fastest polynomial-time algorithms known: the Goldberg-Rao
algorithm4. A type of flow called a blocking flow is discussed and it is demonstrated how blocking flows can
be used to develop polynomial-time algorithms for the maximum flow problem. The author remarks that
the Goldberg-Rao algorithm was the theoretically fastest polynomial-time algorithm for the maximum flow
problem for several years, however, faster algorithms using interior-point methods from linear programming
are now available.

The fifth chapter is on minimum-cost circulation algorithms. The focus is on flow problems that involve
a cost per unit flow, and in which the goal is to minimize the overall cost of the flow while meeting certain
conditions. The idea is to develop a set of conditions that let us know when we have found a circulation of
minimum cost. Wallacher’s algorithm5 is then described. In the chapter notes, the author states that the ideas
from Wallacher’s technical report have been influential, despite never appearing as a journal publication. A
minimum-mean cycle canceling algorithm is then looked at. Capacity-scaling algorithms for the minimum-
cost circulation problem are also studied. A strongly polynomial-time successive approximation framework
for minimum-cost circulation algorithm is then described. The next algorithm of the chapter is for comput-
ing a minimum-cost circulation based on a variant of the simplex method for linear programming. This is
possible since the minimum-cost circulation problem can be expressed as a linear program. This variant of
the simplex method is commonly known as the network simplex algorithm. The chapter then shows how
one can use the minimum-cost circulation to solve another flow problem, one that involves a dimension of
time, viz., the maximum s-t flow problem over time.

The sixth chapter is on generalized flow algorithms. In this chapter, the discussion is about generalized
flow problems; and in particular, the generalized maximum flow problem. In generalized flow problems, for
each arc we also have a gain. This gain can be used to model losses on the arcs due to various reasons. There
is a discussion on how we can tell whether a given proper flow f is maximum. The analog of an augmenting
path for generalized flow is called a generalized augmenting path, or GAP for short. A Wallacher-style
GAP-canceling algorithm is then described. A polynomial-time algorithm for generalized flow based on
an adaptation of Wallacher’s algorithm for the minimum-cost circulation problem is presented. An algo-
rithm for negative-cost GAP detection is also presented. An algorithm to reduce to the case of lossy graphs,
Truemper’s algorithm, gain scaling, and error scaling are other topics discussed in the chapter.

The seventh chapter is on algorithms for multi-commodity flows. In the maximum flow problem, we try
to transport as much of a single good/commodity as possible from the source s to the sink t. In the multi-
commodity flow problem, we have multiple goods (or multiple commodities) that need to be sent between
distinct sources and sinks, one source and sink per commodity. The author remarks that for the network flow

4A. V. Goldberg and S. Rao., Beyond the flow decomposition barrier. Journal of the ACM,45:783-797, 1998
5C. Wallacher. A generalization of the minimum-mean cycle selection rule in cycle canceling algorithms. Technical report,

Abteilung für Optimierung, Institut für Angewandte Mathematik, Technische Universität Carolo-Wilhelmina, Braunschweig, Ger-
many, 1991

7



problems discussed in the earlier chapters, nice, combinatorial statements about how to tell when the flow
is optimal were provided. However, unfortunately, there are no similar theorems for the multi-commodity
flow problem. The two commodity case is then studied. An algorithm that has had many applications in
various fields, viz. the multiplicative weights algorithm, is then discussed. The Garg-Könemann algorithm
for the maximum multi-commodity flow problem is looked at. The Awerbuch-Leighton algorithm is another
multicommodity flow algorithm studied in the chapter.

The eighth chapter is on algorithms for electrical flows. This chapter reviews concepts of electrical flows,
and then shows how they can be applied to computing maximum flows in undirected graphs and for making
graphs sparse. The chapter presents an algorithm for computing such a flow. On certain occasions, it is
useful to get fast, almost exact solutions to network flow problems. One way we can do this is to work with
sparse representations of the original input to the problem. A multiplicative weights algorithm for comput-
ing an approximate s-t flow via electrical s-t flows is presented.

The ninth chapter is on open questions. This chapter concludes the book, by listing some significant open
problems. Five open problems are presented:

1. A simple O(mn) time maximum flow algorithm

2. A Gomory-Hu tree without n − 1 flow computations.

3. A strongly polynomial-time algorithm for the generalized minimum-cost circulation problem.

4. A combinatorial, polynomial-time, exact algorithm for multi-commodity flow

5. Combinatorial minimum-cost circulation algorithms as fast as interior-point algorithms

3 Opinion

The author of this book is known for his work on optimization and approximation algorithms for which he
won many awards. In the preface of this book, he justifies its creation while acknowledging the existence
of the book Network Flows: Theory, Algorithms, and Applications by Ahuja, Magnanti, and Orlin (First
Edition, Pearson, 1993, ISBN 978-0136175490). He considers their book as being definitive and states that
it is not easy for a book to be both definitive and succinct. He aimed for a succinct book. This book is based
on courses that were taught by Williamson. He notes that results that were either too long or too complex
to be covered in a single lecture were not included in the book. He admits that some parts of network flow
theory such as applications or algorithms without polynomially-bounded running times are not the focus of
this book. For such topics, he advises readers to refer the book by Ahuja et al. He also states that some new
topics covered by this book are not covered by Ahuja et al., for example, the work of Goldberg and Rao,
and Wallacher (both cited above). New polynomial-time algorithms for global minimum cut, generalized
maximum flow, and multi-commodity flow problems that emerged after the publication of the book by Ahuja
et al. are found in this book.

The book contains stimulating exercises and useful notes at the end of chapters. There are more than 200
references to the literature. The author index and the subject index are helpful. The open questions posed at
the end of book provide enough challenges for graduate students and researchers. The book includes many
lemmas and theorems with proofs. It provides a succinct, amalgamated view of a broad mixture of effective
combinatorial algorithms for network flow problems, including many topics not found in other textbooks.
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The book presents the latest body of work on computing electrical flows along with new applications of these
flows to classical problems in network flow theory. It will certainly be a thorough textbook for a course on
network flow algorithms and a handy reference for the state of the art in that field. It will be a useful
supplement to the book by Ahuja et al. The book is well suited as a textbook for advanced undergraduate
and graduate courses on network flows. Instructors who supplement the textbook with numerical examples,
computer programming exercises, and optimization software will enhance the utility of the book and make it
more useful for solving real-world problems. The author notes that since his research has largely not been on
network flows, he feels he can serve as an “unbiased outside observer.” At the same time the text reveals his
passionate belief that these are “truly beautiful and useful algorithmic ideas that build on each other in a very
aesthetically pleasing way.” This also comes across in his lectures on the subject, posted shortly before this
writing at https://people.orie.cornell.edu/dpw/orie6330/. This book can also be used
for self-study by research scholars looking for thought-provoking research problems. I strongly recommend
the book for students and researchers.
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Review of6

The Theory of Quantum Information
John Watrous

Cambridge, 2018
590 pages, Hardcover, $79.99 on Cambridge Univ. Press site

eBook $64.00 on the same site

Reviewed by
Stephen A. Fenner (fenner.sa@gmail.com)
Computer Science and Engineering Department

University of South Carolina

Overview

This is an extremely clear, carefully written book that covers the most important results in the sprawling field
of quantum information. It is perfect for a reference, self-study, or a graduate course in quantum information.
It makes no attempt to be broad or encyclopedic, but instead goes deep into the core topics. The definitions
and theorems are all precisely worded, and (starting in Chapter 2) all results have complete proofs, making
the book largely self-contained. The book focuses heavily on the mathematical results and nuts-and-bolts
techniques underpinning current research, and as such gives the reader a thorough and flexible toolkit for
proving new results. If you are just looking for a broad but cursory survey of the field, then this is probably
not the book for you. If, however, you want a working knowledge of the core results and proof techniques
of quantum information with an eye toward doing cutting-edge research in the field, then this book will be
an indispensable addition to your library.

The mathematical theory of quantum information studies the ultimate abilities and limits of transmit-
ting and processing information using the laws of quantum mechanics. It owes much of its motivation
to classical information theory, which was largely developed by Claude Shannon in the mid 20th century,
and to quantum mechanics itself (of course). It addresses basic questions like: how much information can
be transmitted through quantum channels, noisy or otherwise, and how entanglement helps. The theory
informs, and is informed by, its sister disciplines of quantum computation and quantum communication
(which overlap with physics and computer science), although in some sense it is more fundamental. Though
he occasionally mentions applications to these other areas, Watrous seats his book squarely in the realm of
pure mathematics.

Some more initial impressions

There is much to like about this book. Perhaps what strikes me the most is the highly consistent and coherent
approach it takes to the topics it covers. Notation is carefully chosen and unified throughout (I give some
examples below), and there are surprisingly few errors, given the length of the book. Supporting lemmas are
precisely stated in enough generality to be useful in several places. The approach is more bottom-up than
top-down, carefully building up the foundations that can be applied generally before getting to the “end”
results. Some patience is required of the reader, therefore, but that patience pays off richly later on.

As you go through this book, you will find yourself flipping back to previous sections quite often.
Perhaps anticipating this, the author does two things that make this task easy: there are copious citations to

6©2021, Stephen A. Fenner
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previous definitions, lemmas, theorems, etc. in the proofs of later results; each definition, lemma, theorem,
etc. is stated in a completely self-contained manner, with all ingredients fully quantified over in the statement
itself. The latter relieves the reader of the aggravation (common with other texts) of having to scour the
surrounding prose for the context necessary to understand the result she is looking up.

Some things are done differently.

The book does some things in a nonstandard way, especially with choice of notation. Most obviously,
Watrous avoids Dirac notation completely, opting for more standard mathematical notation. You will not
find a single bra or ket anywhere in the text—unusual (to say the least) for a book with “Quantum” in the
title. This choice put me off at first, but I gradually came to appreciate its wisdom; in so many places, with
vectors and operators of different types acting on different spaces, Dirac notation would just get in the way.
In expressions involving the norm of a vector or operator, for example, using ∥⋅∥ with a ket would lead to
vertical bar fatigue before long.

Another notational difference is writing A∗ instead of A† for the adjoint of an operator A. Without
Dirac notation, this leads to some notational unification. The adjoint (or dual) of a vector u is written u∗,
same as with an operator, whereas with Dirac notation, the adjoint of a vector ∣ϕ⟩ is written ⟨ϕ∣, unlike
with operators. There are other, more subtle advantages to avoiding notation common in physics, including
unambiguity of expressions. In a physics paper, one may encounter an expression like ⟨α∣⟨β∣∣γ⟩∣δ⟩. To parse
this correctly, you need to know which vectors combine with which and which juxtapositions represent the
inner product and which represent the tensor product. Letting u = ∣α⟩, v = ∣β⟩, w = ∣γ⟩, and x = ∣δ⟩, Watrous
would write this as (u∗⊗v∗)(w⊗x), which equals the scalar ⟨u,w⟩⟨v, x⟩, rather than, say, u∗⊗v∗⊗w⊗x
or ⟨v,w⟩⟨u,x⟩. The book consistently uses ⊗ for tensor product, and it maintains the order of the factors
when multiplying two tensor products together: (A⊗B)(C ⊗D) = AC ⊗BD for any conformant objects
A,B,C,D.

Watrous defines what others may call a finite-dimensional Hilbert space somewhat differently. He de-
fines a complex Euclidean space as the vector space CΣ for Σ being any nonempty finite set (an alphabet).
A basis {ea ∣ a ∈ Σ} for CΣ is cooked right into the definition itself, where ea(a) = 1 and ea(b) = 0 for
all distinct a, b ∈ Σ. Taking {ea}a∈Σ to be orthonormal determines the Hermitian inner product ⟨⋅, ⋅⟩ on CΣ.
This approach differs in two ways from what is normally done. First, a Hilbert space would normally be
defined in an axiomatic, basis-independent manner, which would not be as convenient for many construc-
tions. Second, using an arbitrary alphabet Σ instead of, say, {1, . . . , n} as an index set allows for much more
flexibility and makes (for example) defining the tensor product of two spaces particularly easy:

CΣ ⊗CΓ = CΣ×Γ

for any alphabets Σ and Γ, with ea ⊗ eb = e(a,b) for all a ∈ Σ and b ∈ Γ.
There are other little consistencies which make for a smooth read. Letters and fonts are sensibly chosen.

For example, two quantum registers X and Y have associated complex Euclidean spaces X and Y , respec-
tively, and x may be chosen to represent an arbitrary vector in X and y chosen to represent a vector in Y .
Expressions and statements are “strongly typed” in the sense that types of objects are explicit, either in the
expression itself or in the quantifiers; for example, the identity operator acting on a spaceX is almost always
written 1X instead of just the more commonly-used 1 or I , the latter being briefer but less readable. I came
to really appreciate this strong typing; it took away a lot of the confusion about what was acting on what and
in what way. Other literature is not nearly as careful about this, particularly in physics, in my experience.
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Topics by chapter

There are eight chapters. Starting with Chapter 2, each chapter ends with a collection of exercises of varying
degrees of difficulty, as well as detailed bibliographic notes, which give some historic background as well
as citing sources. Starting with Chapter 3, each chapter treats a different core topic of research in quantum
information.

Chapter 1 contains the background information and notational conventions needed for the rest of the
book. In this chapter only, results are given without proof. Chapter 1 covers a lot of ground and provides a
broad survey of the various background concepts and results used repeatedly throughout the book, including
lots of linear algebra (of course), as well as the various norms of operators (including the trace norm,
Euclidean norm, and the operator norm), some differential calculus, probability, measure and integration,
convexity, and positive semidefinite programming. If you are comfortable with most of the topics given here
(even if you don’t know how the results are proved), you have enough to make it through the rest of the book
(you won’t need measure and integration until Chapter 7, though). I referred back to this chapter frequently.

Chapter 2 discusses quantum states, purifications thereof, and quantum registers, as well as quantum
channels, which are the central concept in quantum information theory. (Quantum channels are also some-
times called quantum operations or, somewhat mistakenly, superoperators, but these latter terms are some-
what ambiguous and the book does not use them.) This is a big, dense chapter; if you read it and nothing
else, you will already have gotten a lot out of the book. For complex Euclidean spaces X and Y , L(X ,Y)
denotes the space of linear maps from X into Y . L(X) is shorthand for L(X ,X), and T(X ,Y) is shorthand
for L(L(X),L(Y )), the space that includes quantum channels from a quantum register X to a quantum
register Y. A quantum state (or density operator) in a space X is defined to be a positive (semidefinite)
operator7 ρ ∈ L(X) with unit trace. A channel from a quantum register with space X to one with space Y is
defined as a map Φ ∈ T(X ,Y) that is trace-preserving and completely positive:

• Tr (Φ(X)) = Tr (X) for all X ∈ L(X), and

• (Φ⊗1L(Z))(Z) is a positive semidefinite operator (in L(Y⊗Z)), for every complex Euclidean space
Z and positive semidefinite Z ∈ X ⊗Z .

Thus channels are linear maps that map states to states, even when combined with an extra, non-acting
system.

The chapter builds the discussion of channels from the ground up, first defining four standard represen-
tations of an arbitrary Φ ∈ T(X ,Y)—the natural representation, Choi representation, (Kraus) operator sum
representation, and Stinespring representation—and shows how they are interrelated. It then gives several
equivalent conditions for both complete positivity and for trace preservation in terms of the four represen-
tations above. Several examples of quantum channels are given, including unitary (X ↦ UXU∗ for some
unitary U ), replacement, completely depolarizing, completely dephasing, and extremal channels.

Much discussion in this chapter is devoted to measurements. There are different ways to approach the
subject: Do you only want the classical information and don’t care about the post-measurement state? Do
you only care about the post-measurement state and ignore the classical information? Do you want both?
The book takes the first approach for the “official” definition of a measurement on a register with space X—
a map µ ∶ Σ→ L(X) for some alphabet Σ (the set of possible classical outcomes) such that µ(a) is positive

7An operator A ∈ L(X) is positive, or positive semidefinite iff A = B∗B for some conformant operator B.
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for all a ∈ Σ and ∑a∈Σ µ(a) = 1X . This is also called a positive operator-valued measure (or POVM) in the
literature. If a state ρ ∈ L(X) is measured with µ, then the probability of obtaining an outcome a ∈ Σ is
p(a) = ⟨µ(a), ρ⟩, and the register holding ρ is destroyed. After characterizing measurements as quantum-
to-classical channels, different types of measurements are discussed, including information-complete, pro-
jective, and product measurements. After proving Naimark’s theorem and its corollary, which shows how
an arbitrary measurement can be realized by a projective measurement on a bigger space, the chapter ends
with a discussion of nondestructive measurements (where the post-measurement state is retained), extremal
measurements, and ensembles of states.

Chapter 3 addresses state and channel discrimination, which are fundamental tasks in quantum informa-
tion. Here is a typical scenario: Suppose you are given a quantum register in one of two states ρ or σ, chosen
uniformly at random by someone else. You know what ρ and σ are, but you don’t know which one you were
given. How can you maximize your probability of making a correct guess by measuring the register? Chap-
ter 3 proves the Holevo-Helstrom theorem, which shows that the maximum probability of a correct guess
is

1

2
+ 1

4
∥ρ − σ∥1

(where ∥⋅∥1 denotes the trace norm), and describes a measurement that achieves this maximum. The chapter
goes into much more generality, including nonuniform probability distributions and ensembles of more than
two states, discussing the so-called pretty good measurement and proving a related theorem of Barnum &
Knill.

The trace distance is commonly used to gauge how two states are distinct (as in the scenario above). A
somewhat inverse measure is the fidelity function

F (P,Q) = ∥
√
P
√
Q∥

1
,

defined for all positive operators P and Q over the same space. Applied to states, F takes values in [0,1],
and F (ρ, σ) = 1 if and only if ρ = σ. Thus F measures how similar two states are to each other. The chapter
goes into depth with the fidelity function, giving different characterizations of it and results regarding it,
including joint concavity and the fact that fidelity cannot decrease by the action of any quantum channel.
Also included here are the Fuchs-van de Graaf inequalities, which show how the trace distance and the
fidelity are inversely related.

The chapter next turns to channel discrimination, defining the completely bounded trace norm of two
maps Φ,Ψ ∈ T(X ,Y) (this is also known as the ◇-norm), and uses it to prove a channel analogue of
the Holevo-Helstrom theorem. The chapter ends with a number of topics about channel discrimination,
including a semidefinite program for maximum output fidelity.

Chapter 4 covers unital channels and the majorization relation. A quantum channel Φ ∈ T(X ,X) is unital
if it fixes the identity, i.e., if Φ(1X ) = 1X . I think of a unital channel intuitively as one that arises through
a natural physical process—a process that does not involve any artificial manipulation or preparation of the
output. Unital channels are common and have some interesting properties given in the chapter. The chapter
also covers different types of unital channels, including mixed unitary channels (i.e., convex combinations
of unitary channels), which are exactly those channels amenable to environment-assisted channel correction.
Also covered are Weyl-covariant channels and Schur channels.

Chapter 4 also discusses majorization, both for vectors (really as a warm-up) and Hermitian operators.
There are a few equivalent ways to define majorization of vectors. The book uses the following: Given two
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n-dimensional real vectors x and y, one says that x majorizes y (written y ≺ x) if there exists a doubly
stochastic8 n × n matrix A such that y = Ax. Intuitively, y results from x by some kind of random mixing
process. Analogously to vectors, a Hermitian operator X majorizes a Hermitian operator Y over the same
space (written Y ≺X) if there exists a mixed unitary channel that maps X to Y . The book proves a theorem
of Uhlmann saying, among other things, that X majorizes Y if and only if the spectrum of X majorizes
the spectrum of Y (as vectors of real values). The chapter closes with two applications of majorization,
including my personal favorite, the Schur-Horn theorem, which says that for n-dimensional real vectors x
and y, y ≺ x if and only if there exists an n × n Hermitian matrix with diagonal entries y and eigenvalues x.
This theorem is used, among other places, to prove Nielsen’s theorem in Chapter 6.

Chapter 5 is all about quantum entropy and its uses in characterizing the limits of quantum source coding.
This topic is perhaps closest to its analogue in the classical information theory of Shannon, and the chapter
spends a fair amount of time going over the most relevant aspects of the classical theory: Shannon entropy,
relative entropy, joint and conditional entropies, mutual information, and their properties. The analogue of
classical entropy for a quantum state ρ is its von Neumann entropy H(ρ), which is defined as just the classical
entropy of ρ’s spectrum. It is one way of measuring how “mixed” ρ is, or put another way, how incompletely
ρ describes a pure state (pure states have von Neumann entropy 0). Several things are proven about the
quantum entropic quantities, e.g., concavity and subadditivity of the von Neumann entropy. Interestingly,
not all results in the classical case go through in the quantum case. Classically, H(X) ≤ H(X,Y) for any
joint distribution on classical sources X and Y. This is not necessarily true in the quantum case, although it
is shown that H(X) ≤ H(Y) +H(X,Y) for any state of the joint register (X,Y).

A whole subsection is devoted to proving the joint convexity of the quantum relative entropy. This
section is rather technical, but this property of the quantum relative entropy finds many uses later on. For
example, the relative entropy between two states cannot increase when the states are sent through a mixed
unitary channel. For another example, von Neumann entropy is strongly subadditive, i.e.,

H(X,Y,Z) +H(Z) ≤ H(X,Z) +H(Y,Z)

for all states of the joint quantum register (X,Y,Z). Ignoring the register Z yields the usual subadditivity of
H as a special case.

Finally, the chapter takes up quantum source coding in analogy with classical source coding. Here,
the fundamental question is: How much information can you send through a quantum channel (with no
prior entanglement shared between source and receiver)? The classical version is Shannon’s (noiseless)
source coding theorem, which is proved for fixed-length codes with bounded error, after which quantum
source coding is introduced. A theorem of Schumacher gives the quantum version of Shannon’s theorem for
quantum states sent encoded through a quantum channel, where the fidelity function is used to describe the
error bounds.

The chapter then turns to how much classical information can be sent through a quantum channel. Here,
classical information is encoded into a quantum state (by Alice, say), which is then decoded by means of a
measurement (by Bob). We imagine Alice wanting to send a sequence of independently random, identically
distributed letters from some source alphabet Σ to Bob by encoding each a ∈ Σ into a quantum state ρa,
which she sends to Bob. Bob then measures each ρa he receives, with the outcome (hopefully) being a. If
a ∈ Σ is sent with probability p(a), then prior to his measurement, all Bob knows about the quantum state
he receives is the mixed state ρ = ∑a∈Σ ρa. To help with the analysis, the concepts of accessible information

8A matrix is doubly stochastic if all its entries are nonnegative and each row and column sums to 1.
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and Holevo information are introduced. Given ρa and p(a) for all a ∈ Σ, the accessible information is
just the mutual information (as defined classically) between Alice and Bob, maximized over Bob’s choices
of measurement of ρ (and it is shown that the maximum is achievable by a particular measurement). The
Holevo information is the mutual information between Alice and the quantum state ρ. Equivalently it is the
average amount of information gained (beyond the information already in ρ) when the source symbol a is
revealed:

χ(η) = H(ρ) − ∑
a∈Σ

p(a)H(ρa) ,

where η represents the ensemble of states ρa, each weighted by p(a). Then Holevo’s theorem is proved,
which says that the accessible information is always upper bounded by the Holevo information. Since the
latter is bounded by log2 n, where n is the dimension of the space that ρ resides in, Holevo’s theorem implies
that a register with an n-dimensional space used to transfer a quantum state from Alice to Bob can carry at
most log2 n many classical bits. The chapter ends with a discussion of quantum random access codes and a
proof of Nayak’s theorem.

Holevo’s bound, above, assumes no shared prior resources between Alice and Bob, in particular, they
share no entangled state. Speaking of which, . . .

Chapter 6 is all about bipartite entanglement—how to measure it and what one can do with it. As the
author admits, this chapter can only scratch the surface of a large body of research on the subject. It does,
however, cover those topics which probably are the most widely viewed as important. The chapter is divided
into three major sections, covering separability, entanglement manipulation, and phenomena associated en-
tanglement, respectively. The topics in the first section include: the Horodecki criterion for separability;
entanglement rank; separable and LOCC channels and measurements (LOCC stands for Local Operations,
Classical Communication); state discrimination via separable and LOCC measurements. I already knew
much of this material (in less generality), but I did learn some interesting and counterintuitive things; for
example, for any two spaces X and Y , there is a neighborhood of 1X ⊗1Y in which every positive operator
in L(X ⊗Y) is separable with respect to X and Y . This implies that any state of X ⊗Y sufficiently close to
the completely mixed state is separable.

The second section goes into ways of converting entanglement from one form to another. It first proves
Nielsen’s theorem, which gives a close connection between majorization and the action of separable chan-
nels on pure states, and which implies an equivalence between LOCC channels, one-way LOCC channels,
and separable channels when acting on pure states. The section next covers two principal measures of bipar-
tite entanglement: distillable entanglement and entanglement cost (the latter once being called entanglement
of formation). The distillable entanglement of a bipartite state ρ ∈ L(X ⊗Y) describes the number of copies
of the maximally entangled state τ you can produce from n copies of ρ, asymptotically as n→∞, with arbi-
trarily good fidelity via LOCC channels. The flip side of this is the entanglement cost, which describes how
many copies of τ you need to produce n copies of ρ, asymptotically as n→∞, with arbitrarily good fidelity
via LOCC channels. For any ρ, the entanglement cost is an upper bound on the distillable entanglement. If ρ
is a pure state, then these two values are equal to the reduced-state von Neumann entropy H(TrX (ρ)), which
is the same as H(TrY(ρ)). This last fact has intuitive appeal: if a bipartite system is in a pure state ρ (i.e.,
H(ρ) = 0), then the amount of entanglement of ρ equals the amount of uncertainty about the state obtained
by ignoring (i.e., tracing out) one or the other of the component spaces. The section ends with discussing
the curious case of bound entanglement—states that are entangled but have zero distillable entanglement.
The main result here is that all states with positive partial transpose have no distillable entanglement.

The third and final section covers three phenomena associated with entanglement: teleportation, dense
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coding, and nonclassical correlations (a.k.a. Bell inequality violations). As teleportation is commonly
taught, if Alice and Bob share a maximally entangled 2-qubit state (called an EPR pair, or e-bit) then Alice
can transfer (teleport) an arbitrary 1-qubit quantum state to Bob with only two bits of classical communi-
cation. Inversely, Alice can transfer two classical bits, (densely) coded into a single qubit that she sends to
Bob (and this violates the Holevo bound given in the previous chapter). Both of these operations consume
their shared e-bit. This section defines teleportation and dense coding more generally—for any number of
dimensions—and proves analogous limits on how much information can be transferred in these ways and
what types of measurements for Alice are optimal for teleportation.

The study of nonclassical correlations goes back to the work of John Bell in the 1960s. He found a way
to physically test a postulate made earlier by Einstein, Podolsky, and Rosen in the 1930s, which posited
that a complete quantum theory must be “local” and “realistic.” Bell showed that any local realistic theory
must satisfy certain statistical inequalities (now known as Bell inequalities) that are violated according to
the standard quantum theory. Deterministic and quantum correlation operators are defined to study these
inequalities, and the CHSH inequality—due to Clauser, Horne, Shimony, and Holt—is studied in depth.
Finally, the optimal quantum correlation is solved explicitly for a prominent special case using Tsirelson’s
theorem. This chapter in particular has several good exercises and more extensive bibliographic information.

Chapter 7 deals with symmetric vectors and operators as well as unitarily invariant measures. A vector u
in the space X⊗n (the n-fold tensor product of an arbitrary space X with itself) is symmetric or permutation-
invariant if u = Wπu for any π ∈ Sn, where Sn is the group of permutations on {1, . . . , n} and Wπ is the
linear operator that permutes the n components of u according to π, i.e.,

Wπ(x1 ⊗⋯⊗ xn) = xπ−1(1) ⊗⋯⊗ xπ−1(n)

for all x1, . . . , xn ∈ X . The set of symmetric vectors in X⊗n forms an important subspace of X⊗n. There is
an analogous subspace of operators in L(X⊗n) (or L(X)⊗n—the two spaces are canonically isomorphic).
It is shown that this subspace is spanned by {Y ⊗n ∶ Y ∈ L(X)}, a fact that is used quite a bit later on.
The first section of the chapter also covers purifications of exchangable (i.e., symmetric) states9 and, using a
theorem of von Neumann, proves a fundamental result that characterizes those operators that commute with
all permutation-invariant operators: X ∈ L(X⊗n) commutes with all permutation-invariant operators if and
only if X is a linear combination of the operators Wπ for π ∈ Sn.

The next section describes uniform measures on the unit sphere in a space X (the set of unit vectors in
X ), as well as the Haar measure on U(X). Both measures are distinguished by being invariant under unitary
transformations. The section then gives three applications of integrating over these measures—the quantum
de Finetti theorem, a theorem of Werner giving quantitative limits on cloning quantum states (generalizing
the well-known No Cloning theorem), and a proof that all unital channels sufficiently close to the completely
depolarizing channel are mixed unitary.

The final section discusses measure concentration for the two measures discussed previously, as well as
its applications. Measure concentration says that any well-behaved (Lipschitz) function defined on a contin-
uous probability space sticks close to its mean (or median) with high probability. Measure concentration is
used in proving results in quantum information via the probabilitic method, which can prove that an object
with a certain property exists—not by constructing such an object explicitly (which may not be possible)
but rather showing that a randomly chosen object must satisfy the property with positive probability. After
proving Lévy’s lemma and Dvoretsky’s theorem, this section proves that most bipartite pure states are highly

9In physics, these might also be called Bosonic states.
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entangled. It then uses the probabilistic method to prove an important theorem of Hastings showing that the
minimum output entropy of a channel is not additive in general: there exist channels Φ and Ψ of the same
type such that

Hmin(Φ⊗Ψ) < Hmin(Φ) +Hmin(Ψ) ,

where Hmin(Ξ) for a channel Ξ is defined as the minimum value of H(Ξ(ρ)) over all possible input states ρ.
This theorem is a key ingredient in the next chapter regarding the non-additivity of a certain type of channel
capacity. And indeed . . .

Chapter 8 is all about quantum channel capacities. This topic is naturally motivated by Shannon’s Noisy
Coding theorems of the last century. It turns out, however, that the quantum case is more complicated;
there are several inequivalent but nonetheless interesting types of capacity for a quantum channel. The
information carried by the channel may be classical or quantum, and the channel may or may not be assisted
by prior entanglement shared between sender and receiver. The first section deals with transmitting classical
information, with or without shared prior entanglement. It proves the Holevo-Schumacher-Westmoreland
theorem, which characterizes the classical capacity of a channel (without shared entanglement) in terms
of another quantity known as its Holevo capacity. (Roughly, the Holevo capacity χ(Φ) of a channel Φ
is the maximum possible Holevo information obtained for any probabilistic ensemble of input states sent
through Φ.) Then the entanglement-assisted classical capacity theorem is proved, which characterizes this
kind of capacity in terms of the analogous entanglement-assisted Holevo capacity. Besides the two Holevo
capacities, another useful ancillary quantity—the maximum coherent information—is also discussed.

The next section talks about quantum information through quantum channels. It defines the (entangle-
ment non-assisted) quantum capacity and the entanglement generation capacity of a channel, and proves that
the two quantities are equal. It next defines the entanglement-assisted quantum capacity and proves that it is
exactly half of the entanglement-assisted classical capacity. The relationship between the two is reminiscent
of the “2 classical bits = one quantum bit” relationship obtained by teleportation and dense coding. Then,
after several lemmas, the quantum capacity theorem is proved, which equates the quantum capacity with the
regularized maximum coherent information of the channel (here, “regularized” means one takes the limit as
n→∞ of the average of the quantity for n repetitions of the channel).

Finally, the third section address non-additivity and super-activation. It proves a remarkable result of
Hastings that refutes the long-standing additivity conjecture by showing that the Holevo channel capacity
can be super-additive: there exists a channel Φ such that χ(Φ ⊗Φ) > 2χ(Φ). Before Hastings’s result, the
additivity conjecture was extensively studied and shown to have a number of equivalent formulations. It
is refuted here based on the minimum output entropy result of the previous chapter. The proof is noncon-
structive, and no explicit Φ is currently known. By contrast, one can construct a channel which by itself has
zero quantum capacity but its tensor product with itself has positive quantum capacity. Such a phenomenon
is called super-activation. The chapter (and the book) ends with a proof of super-activation, as well as
discussing the need for regularization in defining the various capacities of quantum channels.

Topics not covered in the book

As I said earlier, Watrous’s book is not meant to be broad or encyclopedic, and there are some topics that are
related to quantum information (or informed by it) that nonetheless are not covered in the book. For example,
Watrous does not cover quantum error correction or fault tolerance in any depth. He also does not discuss
informational aspects of quantum cryptography, e.g., the security of the quantum key exchange protocol of
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Bennett and Brassard (commonly referred to as BB84). Some of these topics are included in the earlier10

book of Wilde (M. M. Wilde, Quantum Information Theory, Cambridge, 2013). Wilde’s book, which I
am much less familiar with, also contains a lot of high-level motivation and intuition. Both books are thus
useful in complementary ways—Wilde’s book emphasizing broad-based conceptual intuition; Watrous’s
book emphasizing precision and nuts-and-bolts mathematical techniques.

Overall opinion

This is a great book that fulfills a vital need: a unified, precise, and complete presentation of the most
important topics in quantum information. As I mentioned before, after Chapter 1, all theorem-like statements
(theorems, propositions, lemmas, and corollaries), except for the most trivial ones, have complete proofs. I
found this to be extremely useful while going through the book. The book can be used for reference, self
study, or as the primary text for a graduate-level course in quantum information. Reading the book in detail
(verifying the proofs all the while) gave me a solid, confident understanding of the techniques used by those
in the field—an understanding that I am eager to apply in the future.

10First edition reviewed in this column, SIGACT News 47(3), 2016, pages 12-14. There is a second edition, copyright 2017.
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